Stellar populations of kinematically decoupled cores in E/S0 galaxies
Proceedings of the International Astronomical Union 2:S235 (2006) 122
Abstract:
In this poster contribution, we present results from high spatial resolution integral-field spectroscopy of elliptical (E) and lenticular (S0) galaxies from the SAURON representative survey, obtained with the OASIS and GMOS spectrographs. These seeing-limited observations explore the central 10'10 (typically one kiloparsec diameter) regions of these galaxies using a spatial sampling four times higher than SAURON (027 vs. 094 spatial elements), resulting in almost a factor of two improvement in the median PSF. These data allow accurate study of the central regions to complement the large-scale view provided by SAURON. We derive the stellar and gas kinematics, stellar absorption-line strengths and nebular emission-line strengths for our sample, and derive maps of the luminosity-weighted stellar age, metallicity and abundance ratio via stellar population models. From these data we find a wealth of structures either not seen or poorly resolved in the SAURON data, including a number of kinematically-decoupled cores (KDCs) in the centres of some galaxies. We compare the intrinsic size and luminosity-weighted stellar age of all the visible KDCs in the full SAURON sample, and find two types of components: kiloparsec-scale KDCs, which are older than 8 Gyr, and are found in galaxies with little net rotation; and compact KDCs, which have intrinsic diameters of less than a few hundred parsec, show a range of stellar ages from 0.5 - 15 Gyr (with 5/6 younger than 5 Gyr), are found exclusively in fast-rotating galaxies, and are close to counter-rotating around the same axis as their host. Of the 7 galaxies in the SAURON sample with integrated luminosity-weighted ages less than 5 Gyr, 5 show such compact KDCs, suggesting a link between counter-rotation and recent star-formation. We show that this may be partly due to a combination of small sample size at young ages, and an observational bias, since young KDCs are easier to detect than their older and/or co-rot ating counterparts.Extraplanar gas and magnetic fields in the cluster spiral galaxy NGC 4569
Proceedings of the International Astronomical Union Cambridge University Press (CUP) 2:S237 (2006) 470-470
Triaxial orbit-based model of NGC 4365
Proceedings of the International Astronomical Union Cambridge University Press (CUP) 2:S238 (2006) 331-332
Dark matter in the central regions of early type galaxies
EAS Publications Series 20 (2006) 127-130
Abstract:
We investigate the well-known correlations between the dynamical rnass-to-light ratio M/L and other global observables of elliptical (E) arid lenticular (S0) galaxies. We construct two-integral Jeans and three-integral Schwarzschild dynamical models for a sample of 25 E/S0 galaxies with SAURON integral-field stellar kinematics to about one effective (half-light) radius Re. The comparison of the dynamical M/L with the (M/L)pop inferred from the analysis of the stellar population, indicates that dark matter in early-type galaxies contributes ∼30% of the total mass inside one Re, in agreement with previous studies, with significant variations from galaxy to galaxy. Our results suggest a variation in M/L at constant (M/L)pop, which seems to be linked to the galaxy dynamics. We speculate that fast rotating galaxies have lower dark matter fractions than the slow rotating and generally more massive ones. © EAS, EDP Sciences 2006.A Time Delay for the Largest Gravitationally Lensed Quasar: SDSS J1004+4112
(2006)