Universal bimodality in kinematic morphology and the divergent pathways to galaxy quenching
Nature Astronomy Springer Nature 9:1 (2025) 165-174
Early-type galaxies: Elliptical and S0 galaxies, or fast and slow rotators
Chapter in Reference Module in Materials Science and Materials Engineering, Elsevier (2025)
Abstract:
Early-type galaxies (ETGs) show a bimodal distribution in key structural properties like stellar specific angular momentum, kinematic morphology, shape, and nuclear surface brightness profiles. Slow rotator ETGs, mostly found in the densest regions of galaxy clusters, become common when the stellar mass exceeds a critical value of around M ∗ crit ≈2×1011 M ⊙, or more precisely when lg(R e/kpc)≳12.4−lg(M ∗/M ⊙). These galaxies have low specific angular momentum, spheroidal shapes, and stellar populations that are old, metal-rich, and α-enhanced. In contrast, fast rotator ETGs form a continuous sequence of properties with spiral galaxies. In these galaxies, the age, metallicity, and α-enhancement of the stellar population correlate best with the effective stellar velocity dispersion σ e ∝ M ∗ / R e (i.e., properties are similar for R e ∝ M ∗), or with other proxies approximating their bulge mass fraction. This sequence spans from star-forming spiral disks to quenched, passive, spheroid-dominated fast rotator ETGs. Notably, at a fixed σ e, younger galaxies show lower metallicity. The structural differences and environmental distributions of ETGs suggest two distinct formation pathways: slow rotators undergo early intense star formation followed by rapid quenching via their dark halos and supermassive black holes, and later evolve through dry mergers during hierarchical cluster assembly; fast rotators, on the other hand, develop more gradually through gas accretion and minor mergers, becoming quenched by internal feedback above a characteristic lg(σ e crit/km s−1) ≳ 2.3 (in the local Universe) or due to environmental effects.Galaxy formation and symbiotic evolution with the inter-galactic medium in the age of ELT-ANDES
Experimental Astronomy Springer 58:3 (2024) 21
Abstract:
High-resolution absorption spectroscopy toward bright background sources has had a paramount role in understanding early galaxy formation, the evolution of the intergalactic medium and the reionisation of the Universe. However, these studies are now approaching the boundaries of what can be achieved at ground-based 8-10m class telescopes. The identification of primeval systems at the highest redshifts, within the reionisation epoch and even into the dark ages, and of the products of the first generation of stars and the chemical enrichment of the early Universe, requires observing very faint targets with a signal-to-noise ratio high enough to detect very weak spectral signatures. In this paper, we describe the giant leap forward that will be enabled by ANDES, the high-resolution spectrograph for the ELT, in these key science fields, together with a brief, non-exhaustive overview of other extragalactic research topics that will be pursued by this instrument, and its synergistic use with other facilities that will become available in the early 2030s.The WALOP-North Instrument I: Optical Design, Filter Design, Calibration
ArXiv 2412.00964 (2024)
WEAVE First Light Observations: Origin and Dynamics of the Shock Front in Stephan’s Quintet
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 535 (2024)