An accurate measurement of the spectral resolution of the JWST Near Infrared Spectrograph
(2025)
Assessing Robustness and Bias in 1D Retrievals of 3D Global Circulation Models at High Spectral Resolution: A WASP-76 b Simulation Case Study in Emission
The Astrophysical Journal American Astronomical Society 990:2 (2025) 106
Abstract:
High-resolution spectroscopy (HRS) of exoplanet atmospheres has successfully detected many chemical species and is quickly moving toward detailed characterization of the chemical abundances and dynamics. HRS is highly sensitive to the line shape and position; thus, it can detect three-dimensional (3D) effects such as winds, rotation, and spatial variation of atmospheric conditions. At the same time, retrieval frameworks are increasingly deployed to constrain chemical abundances, pressure–temperature (P–T) structures, orbital parameters, and rotational broadening. To explore the multidimensional parameter space, we need computationally fast models, which are consequently mostly one-dimensional (1D). However, this approach risks introducing interpretation bias since the planet’s true nature is 3D. We investigate the robustness of this methodology at high spectral resolution by running 1D retrievals on simulated observations in emission within an observational framework using 3D global circulation models of the quintessential HJ WASP-76 b. We find that the retrieval broadly recovers conditions present in the atmosphere, but that the retrieved P–T and chemical profiles are not a homogeneous average of all spatial and phase-dependent information. Instead, they are most sensitive to spatial regions with large thermal gradients, which do not necessarily coincide with the strongest emitting regions. Our results further suggest that the choice of parameterization for the P–T and chemical profiles, as well as Doppler offsets among opacity sources, impact the retrieval results. These factors should be carefully considered in future retrieval analyses.GPU-Accelerated Gravitational Lensing and Dynamical (GLaD) modeling for cosmology and galaxies
Astronomy & Astrophysics EDP Sciences 701 (2025) A280-A280
Abstract:
Spatially Resolved Kinematics of SLACS Lens Galaxies. I. Data and Kinematic Classification
The Astrophysical Journal American Astronomical Society 990:1 (2025) 51
Abstract:
We obtain spatially resolved kinematics with the Keck Cosmic Web Imager (KCWI) integral-field spectrograph for a sample of 14 massive ( 11WISDOM Project–XXVI. Cross-checking supermassive black hole mass estimates from ALMA CO gas kinematics and SINFONI stellar kinematics in the galaxy NGC 4751
Monthly Notices of the Royal Astronomical Society Oxford University Press 542:3 (2025) 2039-2059