WISDOM project -- V. Resolving molecular gas in Keplerian rotation around the supermassive black hole in NGC 0383

(2019)

Authors:

Eve V North, Timothy A Davis, Martin Bureau, Michele Cappellari, Satoru Iguchi, Lijie Liu, Kyoko Onishi, Marc Sarzi, Mark D Smith, Thomas G Williams

First Gaia dynamical model of the Milky Way disc with six phase space coordinates: a test for galaxy dynamics

(2019)

Authors:

Maria Selina Nitschai, Michele Cappellari, Nadine Neumayer

Unravelling the origin of the counter-rotating core in IC 1459 with KMOS and MUSE

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 488:2 (2019) 1679-1694

Authors:

Laura J Prichard, Sam P Vaughan, Roger L Davies

The impact of AGN on stellar kinematics and orbits in simulated massive galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:2 (2019) 2702-2722

Authors:

M Frigo, T Naab, M Hirschmann, E Choi, RS Somerville, D Krajnovic, R Davé, Michele Cappellari

Abstract:

We present a series of 10 × 2 cosmological zoom simulations of the formation of massive galaxies with and without a model for active galactic nucleus (AGN) feedback. Differences in stellar population and kinematic properties are evaluated by constructing mock integral field unit maps. The impact of the AGN is weak at high redshift when all systems are mostly fast rotating and disc-like. After z ∼ 1 the AGN simulations result in lower mass, older, less metal rich, and slower rotating systems with less discy isophotes – in general agreement with observations. 2D kinematic maps of in situ and accreted stars show that these differences result from reduced in-situ star formation due to AGN feedback. A full analysis of stellar orbits indicates that galaxies simulated with AGN are typically more triaxial and have higher fractions of x-tubes and box orbits and lower fractions of z-tubes. This trend can also be explained by reduced late in-situ star formation. We introduce a global parameter, ξ3, to characterize the anticorrelation between the third-order kinematic moment h3 and the line-of-sight velocity (Vavg/σ), and compare to ATLAS3D observations. The kinematic correlation parameter ξ3 might be a useful diagnostic for large integral field surveys as it is a kinematic indicator for intrinsic shape and orbital content.

Emission from the circumgalactic medium: from cosmological zoom-in simulations to multiwavelength observables

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:2 (2019) 2417-2438

Authors:

R Augustin, S Quiret, B Milliard, C Peroux, D Vibert, J Blaizot, Y Rasera, R Teyssier, S Frank, J-M Deharveng, V Picouet, DC Martin, ET Hamden, Niranjan Thatte, MP Santaella, L Routledge, S Zieleniewski

Abstract:

We simulate the flux emitted from galaxy haloes in order to quantify the brightness of the circumgalactic medium (CGM). We use dedicated zoom-in cosmological simulations with the hydrodynamical adaptive mesh refinement code RAMSES, which are evolved down to z = 0 and reach a maximum spatial resolution of 380 h−1 pc and a gas mass resolution up to 1.8×105 h1 M⊙ in the densest regions. We compute the expected emission from the gas in the CGM using CLOUDY emissivity models for different lines (e.g. Lyα, C IV, O VI, C VI, O VIII) considering UV background fluorescence, gravitational cooling and continuum emission. In the case of Lyα, we additionally consider the scattering of continuum photons. We compare our predictions to current observations and find them to be in good agreement at any redshift after adjusting the Lyα escape fraction. We combine our mock observations with instrument models for Faint Intergalactic Redshifted Emission Balloon-2 (FIREBall-2; UV balloon spectrograph) and HARMONI (visible and NIR IFU on the ELT) to predict CGM observations with either instrument and optimize target selections and observing strategies. Our results show that Lyα emission from the CGM at a redshift of 0.7 will be observable with FIREBall-2 for bright galaxies (NUV∼18 mag), while metal lines like O VI and C IV will remain challenging to detect. HARMONI is found to be well suited to study the CGM at different redshifts with various tracers.