A weak spectral signature of water vapour in the atmosphere of HD 179949 b at high spectral resolution in the L band
Monthly Notices of the Royal Astronomical Society Oxford University Press 494:1 (2020) 108-119
Abstract:
High-resolution spectroscopy (R⩾20000) is currently the only known method to constrain the orbital solution and atmospheric properties of non-transiting hot Jupiters. It does so by resolving the spectral features of the planet into a forest of spectral lines and directly observing its Doppler shift while orbiting the host star. In this study, we analyse VLT/CRIRES (R=100000) L-band observations of the non-transiting giant planet HD 179949 b centred around 3.5 μm. We observe a weak (3.0σ, or S/N = 4.8) spectral signature of H2O in absorption contained within the radial velocity of the planet at superior-conjunction, with a mild dependence on the choice of line list used for the modelling. Combining this data with previous observations in the K band, we measure a detection significance of 8.4 σ for an atmosphere that is most consistent with a shallow lapse-rate, solar C/O ratio, and with CO and H2O being the only major sources of opacity in this wavelength range. As the two sets of data were taken 3 yr apart, this points to the absence of strong radial-velocity anomalies due, e.g. to variability in atmospheric circulation. We measure a projected orbital velocity for the planet of KP = (145.2 ± 2.0) km s−1 (1σ) and improve the error bars on this parameter by ∼70 per cent. However, we only marginally tighten constraints on orbital inclination (66.2+3.7−3.1 deg) and planet mass (0.963+0.036−0.031 Jupiter masses), due to the dominant uncertainties of stellar mass and semimajor axis. Follow ups of radial-velocity planets are thus crucial to fully enable their accurate characterization via high-resolution spectroscopy.The rest-frame UV luminosity function at z≃4 : a significant contribution of AGN to the bright-end of the galaxy population
Monthly Notices of the Royal Astronomical Society Oxford University Press 494:2 (2020) 1771-1783
Abstract:
We measure the rest-frame UV luminosity function (LF) at z ∼ 4 self-consistently over a wide range in absolute magnitude (−27 . MUV . −20). The LF is measured with 46,904 sources selected using a photometric redshift approach over ∼ 6 deg2 of the combined COSMOS and XMM-LSS fields. We simultaneously fit for both AGN and galaxy LFs using a combination of Schechter or Double Power Law (DPL) functions alongside a single power law for the faint-end slope of the AGN LF. We find a lack of evolution in the shape of the bright-end of the LBG component when compared to other studies at z ' 5 and evolutionary recipes for the UV LF. Regardless of whether the LBG LF is fit with a Schechter function or DPL, AGN are found to dominate at MUV < −23.5. We measure a steep faint-end slope of the AGN LF with αAGN = −2.09+0.35 −0.38 (−1.66+0.29 −0.58) when fit alongside a Schechter function (DPL) for the galaxies. Our results suggest that if AGN are morphologically selected it results in a bias to lower number densities. Only by considering the full galaxy population over the transition region from AGN to LBG domination can an accurate measurement of the total LF be attained.A weak spectral signature of water vapour in the atmosphere of HD 179949 b at high spectral resolution in the L-band
(2020)
SDSS-IV MaNGA: The kinematic-morphology of galaxies on the mass vs star-formation relation in different environments
(2020)
Formation channels of slowly rotating early-type galaxies
(2020)