A Precise Benchmark for Cluster Scaling Relations: Fundamental Plane, Mass Plane and IMF in the Coma Cluster from Dynamical Models

(2020)

Authors:

Shravan Shetty, Michele Cappellari, Richard M McDermid, Davor Krajnovic, PT de Zeeuw, Roger L Davies, Chiaki Kobayashi

Efficient solution of the anisotropic spherically-aligned axisymmetric Jeans equations of stellar hydrodynamics for galactic dynamics

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2020)

Abstract:

<jats:title>Abstract</jats:title> <jats:p>I present a flexible solution for the axisymmetric Jeans equations of stellar hydrodynamics under the assumption of an anisotropic (three-integral) velocity ellipsoid aligned with the spherical polar coordinate system. I describe and test a robust and efficient algorithm for its numerical computation. I outline the evaluation of the intrinsic velocity moments and the projection of all first and second velocity moments, including both the line-of-sight velocities and the proper motions. This spherically-aligned Jeans Anisotropic Modelling (JAMsph) method can describe in detail the photometry and kinematics of real galaxies. It allows for a spatially-varying anisotropy, or stellar mass-to-light ratios gradients, as well as for the inclusion of general dark matter distributions and supermassive black holes. The JAMsph method complements my previously derived cylindrically-aligned JAMcyl and spherical Jeans solutions, which I also summarize in this paper. Comparisons between results obtained with either JAMsph or JAMcyl can be used to asses the robustness of inferred dynamical quantities. As an illustration, I modelled the ATLAS3D sample of 260 early-type galaxies with high-quality integral-field spectroscopy, using both methods. I found that they provide statistically indistinguishable total-density logarithmic slopes. This may explain the previously-reported success of the JAM method in recovering density profiles of real or simulated galaxies. A reference software implementation of JAMsph is included in the publicly-available JAM software package.</jats:p>

Molecular Cross Sections for High Resolution Spectroscopy of Super Earths, Warm Neptunes and Hot Jupiters

(2020)

Authors:

Siddharth Gandhi, Matteo Brogi, Sergei N Yurchenko, Jonathan Tennyson, Phillip A Coles, Rebecca K Webb, Jayne L Birkby, Gloria Guilluy, George A Hawker, Nikku Madhusudhan, Aldo S Bonomo, Alessandro Sozzetti

Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). VI. Crowdsourced lens finding with Space Warps

(2020)

Authors:

Alessandro Sonnenfeld, Aprajita Verma, Anupreeta More, Elisabeth Baeten, Christine Macmillan, Kenneth C Wong, James HH Chan, Anton T Jaelani, Chien-Hsiu Lee, Masamune Oguri, Cristian E Rusu, Marten Veldthuis, Laura Trouille, Philip J Marshall, Roger Hutchings, Campbell Allen, James O' Donnell, Claude Cornen, Christopher Davis, Adam McMaster, Chris Lintott, Grant Miller

SDSS-IV MaNGA: Stellar population correlates with stellar root-mean-square velocity $V_{\rm rms}$ gradients or total-density-profile slopes at fixed effective velocity dispersion $\sigma_{\rm e}$

(2020)

Authors:

Shengdong Lu, Michele Cappellari, Shude Mao, Junqiang Ge, Ran Li