Quantum homogenization as a quantum steady-state protocol on noisy intermediate-scale quantum hardware
Matrix Mechanics of a Particle in a One-Dimensional Infinite Square Well
Weyl metallic state induced by helical magnetic order
Abstract:
In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi level, are of particular interest owing to their exotic charge and spin transport properties. Up to now, the majority of magnetic Weyl semimetals have been realized in ferro- or ferrimagnetically ordered compounds, but a disadvantage of these materials for practical use is their stray magnetic field which limits the minimum size of devices. Here we show that Weyl nodes can be induced by a helical spin configuration, in which the magnetization is fully compensated. Using a combination of neutron diffraction and resonant elastic x-ray scattering, we find that below TN = 14.5 K the Eu spins in EuCuAs develop a planar helical structure which induces two quadratic Weyl nodes with Chern numbers C = ±2 at the A point in the Brillouin zone.Stability of mixed lead halide perovskite films encapsulated in cyclic olefin copolymer at room and cryogenic temperatures
Abstract:
Lead Mixed Halide Perovskites (LMHPs), CsPbBrI2, have attracted significant interest as promising candidates for wide bandgap absorber layers in tandem solar cells due to their relative stability and red-light emission with a bandgap ∼1.7 eV. However, these materials segregate into Br-rich and I-rich domains upon continuous illumination, affecting their optical properties and compromising the operational stability of devices. Herein, we track the microscopic processes occurring during halide segregation by using combined spectroscopic measurements at room and cryogenic temperatures. We also evaluate a passivation strategy to mitigate the halide migration of Br/I ions in the films by overcoating with cyclic olefin copolymer (COC). Our results explain the correlation between grain size, intensity dependencies, phase segregation, activation energy barrier, and their influence on photoinduced carrier lifetimes. Importantly, COC treatment increases the lifetime charge carriers in mixed halide thin films, improving efficient charge transport in perovskite solar cell applications.