Signatures of causality and determinism in a quantum theory of events

(2021)

Authors:

Aditya Iyer, Eduardo O Dias, Vlatko Vedral

The science of can and can't

The New Scientist Elsevier 250:3330 (2021) 34-37

Temporal teleportation with pseudo-density operators: how dynamics emerges from temporal entanglement

(2021)

Authors:

Chiara Marletto, Vlatko Vedral, Salvatore Virzì, Alessio Avella, Fabrizio Piacentini, Marco Gramegna, Ivo Pietro Degiovanni, Marco Genovese

Mitigating realistic noise in practical noisy intermediate-scale quantum devices

Physical Review Applied American Physical Society 15:3 (2021) 34026

Authors:

Jinzhao Sun, Xiao Yuan, Takahiro Tsunoda, Vlatko Vedral, Simon C Benjamin, Suguru Endo

Abstract:

Quantum error mitigation (QEM) is vital for noisy intermediate-scale quantum (NISQ) devices. While most conventional QEM schemes assume discrete gate-based circuits with noise appearing either before or after each gate, the assumptions are inappropriate for describing realistic noise that may have strong gate dependence and complicated nonlocal effects, and general computing models such as analog quantum simulators. To address these challenges, we first extend the scenario, where each computation process, being either digital or analog, is described by a continuous time evolution. For noise from imperfections of the engineered Hamiltonian or additional noise operators, we show it can be effectively suppressed by a stochastic QEM method. Since our method assumes only accurate single qubit controls, it is applicable to all digital quantum computers and various analog simulators. Meanwhile, errors in the mitigation procedure can be suppressed by leveraging the Richardson extrapolation method. As we numerically test our method with various Hamiltonians under energy relaxation and dephasing noise and digital quantum circuits with additional two-qubit crosstalk, we show an improvement of simulation accuracy by 2 orders. We assess the resource cost of our scheme and conclude the feasibility of accurate quantum computing with NISQ devices.

Transforming pure and mixed states using an NMR quantum homogeniser

Physical Review A American Physical Society 103 (2021) 022414

Authors:

Maria Violaris, Gaurav Bhole, Jonathan A Jones, Vlatko Vedral, Chiara Marletto

Abstract:

The universal quantum homogeniser can transform a qubit from any state to any other state with arbitrary accuracy, using only unitary transformations to perform this task. Here we present an implementation of a finite quantum homogeniser using nuclear magnetic resonance (NMR), with a four-qubit system. We compare the homogenisation of a mixed state to a pure state, and the reverse process. After accounting for the effects of decoherence in the system, we find the experimental results to be consistent with the theoretical symmetry in how the qubit states evolve in the two cases. We analyse the implications of this symmetry by interpreting the homogeniser as a physical implementation of pure state preparation and information scrambling.