The Interstellar Medium in I Zw 18 Seen with JWST/MIRI. I. Highly Ionized Gas
The Astrophysical Journal American Astronomical Society 992:1 (2025) 48
Abstract:
We present JWST/MIRI spectra from the Medium-Resolution Spectrometer of I Zw 18, a nearby dwarf galaxy with a metallicity of ∼3% solar. Its proximity enables a detailed study of highly ionized gas that can be interpreted in the context of newly discovered high-redshift dwarf galaxies. We derive aperture spectra centered on 11 regions of interest; the spectra show very low extinction, AV ≲ 0.1, consistent with optical determinations. The gas is highly ionized; we have detected 10 fine-structure lines, including [O iv] 25.9 μm with an ionization potential (IP) of ∼55 eV, and [Ne v] 14.3 μm with an IP of ∼97 eV. The ionization state of I Zw 18 falls at the extreme upper end of all of the line ratios we analyzed, but not coincident with galaxies containing an accreting massive black hole (active galactic nucleus). Comparison of the line ratios with state-of-the-art photoionization and shock models suggests that the high-ionization state in I Zw 18 is not due to shocks. Rather, it can be attributed to metal-poor stellar populations with a self-consistent contribution of X-ray binaries or ultra-luminous X-ray sources. It could also be partially due to a small number of hot low-metallicity Wolf−Rayet stars ionizing the gas; a small fraction (a few percent) of the ionization could come from an intermediate-mass black hole. Our spectroscopy also revealed four 14 μm continuum sources, ≳30–100 pc in diameter, three of which were not previously identified. Their properties are consistent with H ii regions ionized by young star clusters.The z ≳ 9 Galaxy UV Luminosity Function from the JWST Advanced Deep Extragalactic Survey: Insights into Early Galaxy Evolution and Reionization
The Astrophysical Journal American Astronomical Society 992:1 (2025) 63
Abstract:
The high-redshift UV luminosity function provides important insights into the evolution of early galaxies. JWST has revealed an unexpectedly large population of bright (MUV ≲ −20) galaxies at z ≳ 10, implying fundamental changes in the star-forming properties of galaxies at increasingly early times. However, constraining the fainter population (MUV ≳ −18) has been more challenging. In this work, we present the z ≳ 9 UV luminosity function from the JWST Advanced Deep Extragalactic Survey. We calculate the UV luminosity function from several hundred z ≳ 9 galaxy candidates that reach UV luminosities of MUV ∼ −17 in redshift bins of z ∼ 8.5–12 (309 candidates) and z ∼ 12–16 (63 candidates). We search for candidates at z ∼ 16–22.5 and find none. We also estimate the z ∼ 14–16 luminosity function from the z ≥ 14 subset of the z ∼ 12–16 sample. Consistent with other measurements, we find an excess of bright galaxies that is in tension with many theoretical models, especially at z ≳ 12. However, we also find high number densities at −18 ≲ MUV ≲ −17, suggesting that there is a larger population of faint galaxies than expected, as well as bright ones. From our parametric fits for the luminosity function, we find steep faint-end slopes of −2.5 ≲ α ≲ −2.3, suggesting a large population of faint (MUV ≳ −17) galaxies. Combined, the high normalization and steep faint-end slope of the luminosity function could imply that the reionization process is appreciably underway as early as z = 10.Hydrodynamic simulations of black hole evolution in AGN discs II: inclination damping for partially embedded satellites
Monthly Notices of the Royal Astronomical Society Oxford University Press 543:4 (2025) 3768-3782
Abstract:
We investigate the evolution of black holes on orbits with small inclinations () to the gaseous discs of active galactic nuclei (AGNs). We perform 3D adiabatic hydrodynamic simulations within a shearing frame, studying the damping of inclination by black hole-gas gravitation. We find that for objects with , where is the disc aspect ratio, the inclination lost per mid-plane crossing is proportional to the inclination preceding the crossing, resulting in a net exponential decay in inclination. For objects with , damping efficiency decreases for higher inclinations. We consider a variety of different AGN environments, finding that damping is stronger for systems with a higher ambient Hill mass: the initial gas mass within the BH sphere of influence. We provide a fitting formula for the inclination changes as a function of Hill mass. We find reasonable agreement between the damping driven by gas gravity in the simulations and the damping driven by accretion under a Hill-limited Bondi–Hoyle–Lyttleton prescription. We find that gas dynamical friction consistently overestimates the strength of damping, especially for lower inclination systems, by at least an order of magnitude. For regions in the AGN disc where coplanar binary black hole formation by gas dissipation is efficient, we find that the simulated damping time-scales are especially short with . We conclude that as the time-scales for inclination damping are shorter than the expected interaction time between isolated black holes, the vast majority of binaries formed from gas capture should form from components with negligible inclination to the AGN disc.Theoretical Diagnostics for the Physical Conditions in Active Galactic Nuclei under the View of JWST
The Astrophysical Journal: Supplement Series American Astronomical Society 280:2 (2025) 65
Abstract:
With excellent spectral and angular resolutions and, especially, sensitivity, the JWST allows us to observe infrared emission lines that were previously inaccessible or barely accessible. These emission lines are promising for evaluating the physical conditions in different galaxies. Based on MAPPINGS V photoionization models, we systematically analyze the dependence of over 20 mid-infrared (mid-IR) emission lines covered by MIRI on board JWST on the physical conditions of different galactic environments, in particular narrow-line regions in active galactic nuclei (AGN). We find that mid-IR emission lines of highly ionized argon (i.e., [Ar V] 7.90 and 13.10 μm) and neon (i.e., [Ne V] 14.32 and 24.32 μm, and [Ne VI] 7.65 μm) are effective in diagnosing the physical conditions in AGN. We accordingly propose new prescriptions to constrain the ionization parameter (U), peak energy of the AGN spectrum (Epeak), metallicity ( 12+log(O/H) ), and gas pressure (P/k) in AGN. These new calibrations are applied to the central regions of six Seyfert galaxies included in the Galaxy Activity, Torus, and Outflow Survey as a proof of concept. We also discuss the similarity and difference in the calibrations of these diagnostics in AGN of different luminosities, highlighting the impact of hard X-ray emission and particularly radiative shocks, as well as the different diagnostics in star-forming regions. Finally, we propose diagnostic diagrams involving [Ar V] 7.90 μm and [Ne VI] 7.65 μm to demonstrate the feasibility of using the results of this study to distinguish galactic regions governed by different excitation sources.Angular correlation functions of bright Lyman-break galaxies at 3 ≲ z ≲ 5
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1651