WISDOM Project–XXVI. Cross-checking supermassive black hole mass estimates from ALMA CO gas kinematics and SINFONI stellar kinematics in the galaxy NGC 4751
Monthly Notices of the Royal Astronomical Society Oxford University Press 542:3 (2025) 2039-2059
Abstract:
We present high angular resolution (0.19 arcsec or pc) Atacama Large Millimeter/submillimeter Array observations of the CO(3–2) line emission of the galaxy NGC 4751. The data provide evidence for the presence of a central supermassive black hole (SMBH). Assuming a constant mass-to-light ratio (), we infer a SMBH mass M and a F160W filter stellar M/L, where the first uncertainties are statistical and the second systematic. Assuming a linearly spatially varying , we infer M and , where R is the galactocentric radius. We also present SMBH mass estimates using the Jeans Anisotropic Modelling (JAM) method and Very Large Telescope Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) stellar kinematics. Assuming a cylindrically aligned velocity ellipsoid (JAM), we infer M, and while assuming a spherically aligned velocity ellipsoid (JAM), we infer M. The SMBH mass assuming a constant is statistically consistent with that of JAM, whereas the mass assuming a linearly varying is consistent with both JAM and JAM (within the uncertainties). Our derived masses are larger than (and inconsistent with) one previous stellar dynamical measurement using the Schwarzschild orbit-superposition method and the same SINFONI kinematics.The Interstellar Medium in IZw18 seen with JWST/MIRI: I. Highly Ionized Gas
(2025)
The emergence and ionizing feedback of Pop III.1 stars as progenitors for supermassive black holes
Monthly Notices of the Royal Astronomical Society Oxford University Press 542:2 (2025) 1532-1543
Abstract:
Recent observations by James Webb Space Telescope reveal an unexpectedly abundant population of rapidly growing supermassive black holes (SMBHs) in the early Universe, underscoring the need for improved models for their origin and growth. Employing new full radiative transfer hydrodynamical simulations of galaxy formation, we investigate the local and intergalactic feedback of SMBH progenitors for the Population III.1 (Pop III.1) scenario, i.e. efficient formation of supermassive stars from pristine, undisturbed dark matter minihaloes. Our cosmological simulations capture the R-type expansion phase of these Pop III.1 stars, with their H-ionizing photon luminosities of generating H ii regions that extend deep into the intergalactic medium, reaching comoving radii of . We vary both the Pop III.1 ionization flux and cosmological formation environments, finding the former regulates their final , whereas the latter is more important in setting their formation redshift. We use the results from our radiation-hydrodynamics simulations to estimate the cosmic number density of SMBHs, , expected from Pop III.1 progenitors. We find , consistent with the results inferred from recent observations of the local and high-redshift universe. Overall, this establishes Pop III.1 progenitors as viable candidates for the formation of the first SMBH, and emphasizes the importance of exploring heavy mass seed scenarios.The ALMA REBELS survey: [OIII]88μm line scans of UV-bright z ≳ 7.6 galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1287
Abstract:
Abstract We present the [OIII]88μm spectral scan results from the ALMA Large Program REBELS (Reionization Era Bright Emission Line Survey). The generally high luminosity of [OIII]88μm and ALMA’s Band 7 efficiency motivated its use for line scans of REBELS targets at z > 8. Spectral scans of four sources covered 326.4-373.0 GHz (z = 8.10-9.39), reaching [OIII]88μm luminosities of ∼7.6 × 108 L⊙ (5σ) for a FWHM of 400 km s−1. No credible lines are detected for the four targets. For REBELS-04, the non-detection is unexpected given the ≥92% coverage of the redshift likelihood distribution and its estimated SFR of 40 M⊙ yr−1. Possible explanations for the faint [OIII]88μm emission (assuming a FWHM of 100 km s−1) include high ISM densities (>ncrit ≈ 510 cm−3) and low ionization parameters (log10 Uion ≲ −2.5). For REBELS-37, a subsequent detection of [CII]158μm (z = 7.643) confirmed it lay outside our scan range. For REBELS-11 and REBELS-13, it remains unclear if the non-detection is due to the depth of the line scan or redshift coverage. REBELS-04 and REBELS-37 show significant (≥3.8σ) dust continuum emission in Band 7. If the photometric redshift of REBELS-04 is accurate, i.e., $z_{\mathrm{phot}}=8.57^{+0.10}_{-0.09}$ or $z_{\mathrm{phot}}=8.43^{+0.10}_{-0.10}$ accounting for additional neutral hydrogen in the circumgalactic medium, REBELS-04 would constitute the most distant dust-detected galaxy identified with ALMA to date. Additional Band 6 dust observations of REBELS-37 constrain the shape of the far-IR SED, ruling out cold dust temperatures (≲ 28 K) at 3σ. Further insight into these galaxies will require spectroscopic redshifts and deeper multi-band dust observations.3D adiabatic simulations of binary black hole formation in AGN discs
Monthly Notices of the Royal Astronomical Society Oxford University Press 542:2 (2025) 1033-1055