The Importance of Dust Distribution in Ionizing-photon Escape: NIRCam and MIRI Imaging of a Lyman Continuum-emitting Galaxy at z ∼ 3.8

The Astrophysical Journal Letters American Astronomical Society 988:2 (2025) L69

Authors:

Zhiyuan Ji, Stacey Alberts, Yongda Zhu, Eros Vanzella, Mauro Giavalisco, Kevin Hainline, William M Baker, Andrew J Bunker, Jakob M Helton, Jianwei Lyu, Pierluigi Rinaldi, Brant Robertson, Charlotte Simmonds, Sandro Tacchella, Christina C Williams, Christopher NA Willmer, Joris Witstok

Abstract:

We present deep JWST/NIRCam and MIRI imaging of Ion1, a previously confirmed Lyman continuum (LyC)-emitting galaxy at zspec = 3.794. Together with existing Hubble Space Telescope imaging, these new observations from the JWST Advanced Deep Extragalactic Survey program enable a joint analysis of Ion1’s LyC, rest-frame UV, stellar, and dust emission with unprecedented detail. We report the first detection of dust emission at rest-frame ∼3 μm in a high-redshift LyC-emitting galaxy using MIRI/F1500W. Our analysis suggests a porous distribution of dust in Ion1, with regions exhibiting evidence of dust deficit coinciding both with LyC-emitting regions and with the peak of Hα emission. Furthermore, multiband NIRCam imaging reveals a strong far-UV-to-optical color gradient, where LyC-emitting regions appear significantly bluer than the rest of Ion1. Spatially resolved spectral energy distribution fitting confirms that this color gradient is primarily driven by spatially varying dust attenuation. Together, these findings suggest that Ion1’s LyC emission originates from a compact star-forming complex near its stellar-light centroid, where stellar feedback carves out low-H i-column-density channels, facilitating LyC escape. However, only a fraction of these LyC photons—specifically those along sightlines with minimal H i obscuration—ultimately escape and reach observers. This work underscores the critical role of dust and neutral gas geometry in shaping LyC escape in galaxies at high redshifts. Anisotropic LyC escape may be a common feature in the early Universe, which must be properly incorporated to constrain the epoch of reionization.

A Bayesian approach to time-domain photonic Doppler velocimetry analysis.

The Review of scientific instruments 96:8 (2025) 085203

Authors:

JR Allison, R Bordas, J Read, G Burdiak, V Beltrán, N Joiner, H Doyle, N Hawker, J Skidmore, T Ao, A Porwitzky, D Dolan, B Farfan, C Johnson, A Hansen

Abstract:

Photonic Doppler velocimetry (PDV) is an established technique for measuring the velocities of fast-moving surfaces in high-energy-density experiments. In the standard approach to PDV analysis, the short-time Fourier transform (STFT) is used to generate a spectrogram from which the velocity history of the target is inferred. The user chooses the form, duration, and separation of the window function. Here, we present a Bayesian approach to infer the velocity directly from the PDV oscilloscope trace, without using the spectrogram for analysis. This is clearly a difficult inference problem due to the highly periodic nature of the data, but we find that with carefully chosen prior distributions for the model parameters, we can accurately recover the injected velocity from synthetic data. We validate this method using PDV data collected at the STAR two-stage light gas gun at Sandia National Laboratories, recovering shock-front velocities in quartz that are consistent with those inferred using the STFT-based approach and are interpolated across regions of low signal-to-noise data. Although this method does not rely on the same user choices as the STFT, we caution that it can be prone to misspecification if the chosen model is not sufficient to capture the velocity behavior. Analysis using posterior predictive checks can be used to establish whether a better model is required, although more complex models come with additional computational cost, often taking more than several hours to converge when sampling the Bayesian posterior. We, therefore, recommend it be viewed as a complementary method to that of the STFT-based approach.

Puzzling radial gradients of K-band absorption features in the giant elliptical galaxy M87

Astronomy & Astrophysics EDP Sciences 700 (2025) a64

Authors:

F La Barbera, A Vazdekis, A Pasquali, J Heidt, E Eftekhari, MA Beasley, A Gargiulo, S Bisogni, C Spiniello, LP Cassarà, M Sarzi

Abstract:

We present new K -band spectroscopy for the giant elliptical galaxy M87 in the Virgo cluster, taken with the Large Binocular Telescope Utility Camera in the Infrared (LUCI) spectrograph at the Large Binocular Telescope (LBT). The new data are used to study line strengths of K -band absorption features from different chemical species, namely Fe, Mg, Ca, Na, and CO, as a function of galactocentric distance, out to ∼40″ from the center (about half of the galaxy effective radius). The radial trends of spectral indices are compared to those for the bulge of M31, observed with the same instrument. For M87, most K -band indices exhibit flat radial profiles, with the exception of NaI2.21, which decreases outward, with a negative radial gradient. Significant offsets are found between indices for M87 and those for the bulge of M31, the latter having weaker line strengths for almost all features, but Fe and Ca, for which we find similar trends in both systems. We find that the behavior of CO features – most prominent in giant stars – is difficult to explain, consistent with previous results for the central regions of massive galaxies. In particular, the CO indices are stronger in M87 than M31, and do not exhibit significant radial gradients in M87, despite its IMF being bottom heavier than M31 especially in its central region. Predictions of state-of-the-art stellar population models, based on results from the optical spectral range, are able to match only the Na and Ca indices of M87, while a significant mismatch is found for all other indices. This shows that state-of-the-art stellar population models should be improved significantly in order to provide reliable constraints on the stellar population content of galaxies in the near-infrared spectral range.

Simulating Intermediate Black Hole Mass Measurements for a Sample of Galaxies with Nuclear Star Clusters Using ELT/HARMONI High Spatial Resolution Integral-field Stellar Kinematics

Astronomical Journal American Astronomical Society 170:2 (2025) 124

Authors:

Dieu D Nguyen, Michele Cappellari, Hai N Ngo, Tinh QT Le, Tuan N Le, Khue NH Ho, An K Nguyen, Phong T On, Huy G Tong, Niranjan Thatte, Miguel Pereira-Santaella

Abstract:

Understanding the demographics of intermediate-mass black holes (IMBHs, MBH ≈ 102–105 M⊙) in low-mass galaxies is key to constraining black hole seed formation models, but detecting them is challenging due to their small gravitational sphere of influence (SOI). The upcoming Extremely Large Telescope (ELT) High Angular Resolution Monolithic Optical and Near-infrared Integral Field Spectrograph (HARMONI) instrument, with its high angular resolution, offers a promising solution. We present simulations assessing HARMONI’s ability to measure IMBH masses in nuclear star clusters (NSCs) of nearby dwarf galaxies. We selected a sample of 44 candidates within 10 Mpc. For two representative targets, NGC 300 and NGC 3115 dw01, we generated mock HARMONI integral-field data cubes using realistic inputs derived from Hubble Space Telescope imaging, stellar population models, and Jeans anisotropic models (JAM), assuming IMBH masses up to 1% of the NSC mass. We simulated observations across six near-infrared gratings at 10 mas resolution. Analyzing the mock data with standard kinematic extraction and JAM models in a Bayesian framework, we demonstrate that HARMONI can resolve the IMBH SOI and accurately recover masses down to ≈0.5% of the NSC mass within feasible exposure times. These results highlight HARMONI’s potential to revolutionize IMBH studies.

Detection of the 2175 Å UV bump at z > 7: evidence for rapid dust evolution in a merging reionization-era galaxy

Monthly Notices of the Royal Astronomical Society Oxford University Press 542:2 (2025) 1136-1154

Authors:

Katherine Ormerod, Joris Witstok, Renske Smit, Anna de Graaff, Jakob M Helton, Michael V Maseda, Irene Shivaei, Andrew J Bunker, Stefano Carniani, Francesco D’Eugenio, Rachana Bhatawdekar, Jacopo Chevallard, Marijn Franx, Nimisha Kumari, Roberto Maiolino, Pierluigi Rinaldi, Brant Robertson, Sandro Tacchella

Abstract:

Dust is a fundamental component of the interstellar medium within galaxies, as dust grains are highly efficient absorbers of ultraviolet (UV) and optical photons. Accurately quantifying this obscuration is crucial for interpreting galaxy spectral energy distributions (SEDs). The extinction curves in the Milky Way (MW) and Large Magellanic Cloud exhibit a strong feature known as the 2175 Å UV bump, most often attributed to small carbonaceous dust grains. This feature was recently detected in faint galaxies out to , suggesting rapid formation channels. Here, we report the detection of a strong UV bump in a luminous Lyman-break galaxy at , GNWY-7379420231, through observations taken as part of the NIRSpec Wide GTO survey. We fit a dust attenuation curve that is consistent with the MW extinction curve within , in a galaxy just Myr after the big bang. From the integrated spectrum, we infer a young mass-weighted age ( Myr) for this galaxy, however spatially resolved SED fitting unveils the presence of an older stellar population ( Myr). Furthermore, morphological analysis provides evidence for a potential merger. The underlying older stellar population suggests the merging system could be pre-enriched, with the dust illuminated by a merger-induced starburst. Moreover, turbulence driven by stellar feedback in this bursty region may be driving polycyclic aromatic hydrocarbon formation through top-down shattering. The presence of a UV bump in GNWY-7379420231 solidifies growing evidence for the rapid evolution of dust properties within the first billion years of cosmic time.