JADES: An Abundance of Ultra-Distant T- and Y-Dwarfs in Deep Extragalactic Data
(2025)
Galaxy-scale consequences of tidal disruption events: extended emission-line regions, extreme coronal lines, and infrared-to-optical light echoes
Monthly Notices of the Royal Astronomical Society Oxford University Press 544:2 (2025) staf1649
Abstract:
Stars in galactic centres are occasionally scattered so close to the central supermassive black hole that they are completely disrupted by tidal forces, initiating a transient accretion event. The aftermath of such a tidal disruption event (TDE) produces a bright-and-blue accretion flow that is known to persist for at least a decade (observationally) and can in principle produce ionizing radiation for hundreds of years. TDEs are known (observationally) to be overrepresented in galaxies that show extended emission-line regions (EELRs), with no pre-TDE classical active galactic nucleus activity, and to produce transient ‘coronal lines’, such as [Fe x] and [Fe xiv]. Using coupled cloudy-TDE disc simulations we show that TDE discs produce a sufficient ionizing radiation flux over their lifetimes to power both EELR of radial extents of light years, and coronal lines. EELRs are produced when the ionizing radiation interacts with low-density () clouds on galactic scales, while coronal lines are produced by high-density () clouds near the galactic centre. High-density gas in galactic centres will also result in the rapid switching on of narrow-line features in post-TDE galaxies, and also various high-ionization lines, which may be observed throughout the infrared with James Webb Space Telescope. Galaxies with a higher intrinsic rate of TDEs will be more likely to show macroscopic EELRs, which can be traced to originate from the previous TDE in that galaxy.The Clustering of Active Galactic Nuclei and Star Forming Galaxies in the LoTSS Deep Fields
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1626
Abstract:
Abstract Using deep observations across three of the LOFAR Two-metre Sky Survey Deep Fields, this work measures the angular clustering of star forming galaxies (SFGs) and low-excitation radio galaxies (LERGs) to z ≲1.5 for faint sources, S144 MHz ≥200 μJy. We measure the angular auto-correlation of LOFAR sources in redshift bins and their cross-correlation with multi-wavelength sources to measure the evolving galaxy bias for SFGs and LERGs. Our work shows the bias of the radio-selected SFGs increases from $b=0.90^{+0.11}_{-0.10}$ at z ∼0.2 to $b=2.94^{+0.36}_{-0.36}$ at z ∼1.2; faster than the assumed b($z$)∝1/D($z$) models adopted in previous LOFAR cosmology studies (at sensitivities where AGN dominate), but in broad agreement with previous work. We further study the luminosity dependence of bias for SFGs and find little evidence for any luminosity dependence at fixed redshift, although uncertainties remain large for the sample sizes available. The LERG population instead shows a weaker redshift evolution with $b=2.33^{+0.28}_{-0.27}$ at z ∼0.7 to $b=2.65^{+0.57}_{-0.55}$ at z ∼1.2, though it is also consistent with the assumed bias evolution model (b($z$)∝1/D($z$)) within the measured uncertainties. For those LERGs which reside in quiescent galaxies (QLERGs), there is weak evidence that they are more biased than the general LERG population and evolve from b=$2.62^{+0.33}_{-0.33}$ at z ∼0.7 to $b=3.08^{+0.85}_{-0.84}$ at z ∼1.2. This suggests the halo environment of radio sources may be related to their properties. These measurements can help constrain models for the bias evolution of these source populations, and can help inform multi-tracer analyses.BlackTHUNDER: Shedding light on a dormant and extreme little red dot at z=8.50
(2025)
Glimmers in the Cosmic Dawn. II. A Variability Census of Supermassive Black Holes across the Universe * * This research is based on observations made with the NASA/ESA Hubble Space Telescope obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. These observations are associated with programs 1563, 12498, and 17073
The Astrophysical Journal American Astronomical Society 991:2 (2025) 141