Resonant Dynamical Friction in Nuclear Star Clusters: Rapid Alignment of an Intermediate-mass Black Hole with a Stellar Disk

(2021)

Authors:

Ákos Szölgyén, Gergely Máthé, Bence Kocsis

Cleaning Images with Gaussian Process Regression

ArXiv 2103.1225 (2021)

Authors:

Hengyue Zhang, Timothy D Brandt

The black hole transient MAXI J1348-630: evolution of the compact and transient jets during its 2019/2020 outburst

(2021)

Authors:

F Carotenuto, S Corbel, E Tremou, TD Russell, A Tzioumis, RP Fender, PA Woudt, SE Motta, JCA Miller-Jones, J Chauhan, AJ Tetarenko, GR Sivakoff, I Heywood, A Horesh, AJ van der Horst, E Koerding, KP Mooley

The infrared-radio correlation of star-forming galaxies is strongly M-star-dependent but nearly redshift-invariant since z similar to 4

Astronomy and Astrophysics European Southern Observatory 647 (2021) A123

Authors:

I Delvecchio, E Daddi, Mt Sargent, Matt Jarvis, D Elbaz, S Jin, D Liu, Imogen Whittam, H Algera, R Carraro, C D'Eugenio, J Delhaize, Bs Kalita, S Leslie, D Cs Molnar, M Novak, I Prandoni, V Smolcic, Y Ao, M Aravena, F Bournaud, Jd Collier, Sm Randriamampandry, Z Randriamanakoto, G Rodighiero, J Schober, Sv White, G Zamorani

Abstract:

Over the past decade, several works have used the ratio between total (rest 8−1000 μm) infrared and radio (rest 1.4 GHz) luminosity in star-forming galaxies (qIR), often referred to as the infrared-radio correlation (IRRC), to calibrate the radio emission as a star formation rate (SFR) indicator. Previous studies constrained the evolution of qIR with redshift, finding a mild but significant decline that is yet to be understood. Here, for the first time, we calibrate qIR as a function of both stellar mass (M⋆) and redshift, starting from an M⋆-selected sample of > 400 000 star-forming galaxies in the COSMOS field, identified via (NUV − r)/(r − J) colours, at redshifts of 0.1 < z < 4.5. Within each (M⋆,z) bin, we stacked the deepest available infrared/sub-mm and radio images. We fit the stacked IR spectral energy distributions with typical star-forming galaxy and IR-AGN templates. We then carefully removed the radio AGN candidates via a recursive approach. We find that the IRRC evolves primarily with M⋆, with more massive galaxies displaying a systematically lower qIR. A secondary, weaker dependence on redshift is also observed. The best-fit analytical expression is the following: qIR(M⋆, z) = (2.646 ± 0.024) × (1 + z)( − 0.023 ± 0.008)–(0.148 ± 0.013) × (log M⋆/M⊙ − 10). Adding the UV dust-uncorrected contribution to the IR as a proxy for the total SFR would further steepen the qIR dependence on M⋆. We interpret the apparent redshift decline reported in previous works as due to low-M⋆ galaxies being progressively under-represented at high redshift, as a consequence of binning only in redshift and using either infrared or radio-detected samples. The lower IR/radio ratios seen in more massive galaxies are well described by their higher observed SFR surface densities. Our findings highlight the fact that using radio-synchrotron emission as a proxy for SFR requires novel M⋆-dependent recipes that will enable us to convert detections from future ultra-deep radio surveys into accurate SFR measurements down to low-M⋆ galaxies with low SFR.

WISDOM project – VII. Molecular gas measurement of the supermassive black hole mass in the elliptical galaxy NGC 7052

Monthly Notices of the Royal Astronomical Society Oxford University Press 503:4 (2021) stab791

Authors:

Mark D Smith, Martin Bureau, Timothy A Davis, Michele Cappellari, Lijie Liu, Kyoko Onishi, Satoru Iguchi, Eve V North, Marc Sarzi, Thomas G Williams

Abstract:

Supermassive black hole (SMBH) masses can be measured by resolving the dynamical influences of the SMBHs on tracers of the central potentials. Modern long-baseline interferometers have enabled the use of molecular gas as such a tracer. We present here Atacama Large Millimeter/submillimeter Array observations of the elliptical galaxy NGC 7052 at 0′′.11 (⁠37pc) resolution in the 12CO(2-1) line and 1.3 mm continuum emission. This resolution is sufficient to resolve the region in which the potential is dominated by the SMBH. We forward model these observations, using a multi-Gaussian expansion of a Hubble Space Telescope F814W image and a spatially constant mass-to-light ratio to model the stellar mass distribution. We infer an SMBH mass of 2.5±0.3×109M⊙ and a stellar I-band mass-to-light ratio of 4.6±0.2M⊙/L⊙,I (3σ confidence intervals). This SMBH mass is significantly larger than that derived using ionized gas kinematics, which however appears significantly more kinematically disturbed than the molecular gas. We also show that a central molecular gas deficit is likely to be the result of tidal disruption of molecular gas clouds due to the strong gradient in the central gravitational potential.