Timing the earliest quenching events with a robust sample of massive quiescent galaxies at 2 < z < 5
Monthly Notices of the Royal Astronomical Society Oxford University Press 496:1 (2020) 695-707
Abstract:
We present a sample of 151 massive (M∗ > 1010 M·) quiescent galaxies at 2 < z < 5, based on a sophisticated Bayesian spectral energy distribution fitting analysis of the CANDELS UDS and GOODS-South fields. Our sample includes a robust sub-sample of 61 objects for which we confidently exclude low-redshift and star-forming solutions. We identify 10 robust objects at z > 3, of which 2 are at z > 4. We report formation redshifts, demonstrating that the oldest objects formed at z > 6; however, individual ages from our photometric data have significant uncertainties, typically ∼0.5 Gyr. We demonstrate that the UVJ colours of the quiescent population evolve with redshift at z > 3, becoming bluer and more similar to post-starburst galaxies at lower redshift. Based upon this, we construct a model for the time evolution of quiescent galaxy UVJ colours, concluding that the oldest objects are consistent with forming the bulk of their stellar mass at z ∼6-7 and quenching at z ∼5. We report spectroscopic redshifts for two of our objects at z = 3.440 and 3.396, which exhibit extremely weak Ly α emission in ultra-deep VANDELS spectra. We calculate star formation rates based on these line fluxes, finding that these galaxies are consistent with our quiescent selection criteria, provided their Ly α escape fractions are >3 and >10 per cent, respectively. We finally report that our highest redshift robust object exhibits a continuum break at λ ∼7000 Å in a spectrum from VUDS, consistent with our photometric redshift of z-\mathrmphot=4.72+0.06--0.04. If confirmed as quiescent, this object would be the highest redshift known quiescent galaxy. To obtain stronger constraints on the times of the earliest quenching events, high-SNR spectroscopy must be extended to z a 3 quiescent objects.Stellar Population Synthesis with Distinct Kinematics: Multi-Age Asymmetric Drift in SDSS-IV MaNGA Galaxies
(2020)
JINGLE -- IV. Dust, HI gas and metal scaling laws in the local Universe
(2020)
JINGLE – IV. Dust, H I gas, and metal scaling laws in the local universe
Monthly Notices of the Royal Astronomical Society Oxford University Press 496:3 (2020) 3668-3687
Abstract:
Scaling laws of dust, H I gas, and metal mass with stellar mass, specific star formation rate, and metallicity are crucial to our understanding of the build-up of galaxies through their enrichment with metals and dust. In this work, we analyse how the dust and metal content varies with specific gas mass (MH I/M⋆) across a diverse sample of 423 nearby galaxies. The observed trends are interpreted with a set of Dust and Element evolUtion modelS (DEUS) – including stellar dust production, grain growth, and dust destruction – within a Bayesian framework to enable a rigorous search of the multidimensional parameter space. We find that these scaling laws for galaxies with −1.0 ≲ log MH I/M⋆ ≲ 0 can be reproduced using closed-box models with high fractions (37–89 per cent) of supernova dust surviving a reverse shock, relatively low grain growth efficiencies (ϵ = 30–40), and long dust lifetimes (1–2 Gyr). The models have present-day dust masses with similar contributions from stellar sources (50–80 per cent) and grain growth (20–50 per cent). Over the entire lifetime of these galaxies, the contribution from stardust (>90 per cent) outweighs the fraction of dust grown in the interstellar medium (<10 per cent). Our results provide an alternative for the chemical evolution models that require extremely low supernova dust production efficiencies and short grain growth time-scales to reproduce local scaling laws, and could help solving the conundrum on whether or not grains can grow efficiently in the interstellar medium.ALMA [N \i\i ] 205 \mu m Imaging Spectroscopy of the Lensed Submillimeter galaxy ID 141 at redshift 4.24
(2020)