Why do extremely massive disc galaxies exist today?

(2020)

Authors:

Ryan A Jackson, Garreth Martin, Sugata Kaviraj, Clotilde Laigle, Julien Devriendt, Yohan Dubois, Christophe Pichon

SDSS-IV MaNGA: Stellar population correlates with stellar root-mean-square velocity $V_{\rm rms}$ gradients or total-density-profile slopes at fixed effective velocity dispersion $\sigma_{\rm e}$

(2020)

Authors:

Shengdong Lu, Michele Cappellari, Shude Mao, Junqiang Ge, Ran Li

The MBHBM Project - I: measurement of the central black hole mass in the Dwarf Galaxy NGC 3504 using molecular gas kinematics

Astrophysical Journal American Astronomical Society 892:1 (2020) 68

Authors:

Dieu D Nguyen, Mark den Brok, Anil C Seth, Michele Cappellari, Martin Bureau

Abstract:

We present a dynamical mass measurement of the supermassive black hole (SMBH) in the nearby double-barred spiral galaxy NGC 3504 as part of the Measuring Black Holes in below Milky Way (Msstarf) Mass Galaxies Project. Our analysis is based on Atacama Large Millimeter/submillimeter Array cycle 5 observations of the ${}^{12}\mathrm{CO}(2-1)$ emission line. These observations probe NGC 3504's circumnuclear gas disk (CND). Our dynamical model of the CND simultaneously constrains a black hole (BH) mass of ${1.6}_{-0.4}^{+0.6}\times {10}^{7}$ M⊙, which is consistent with the empirical BH–galaxy scaling relations and a mass-to-light ratio in the H band of 0.44 ± 0.12 (M⊙/${L}_{\odot }$). This measurement also relies on our new estimation of the distance to the galaxy of 32.4 ± 2.1 Mpc using the surface brightness fluctuation method, which is much further than the existing distance estimates. Additionally, our observations detect a central deficit in the ${}^{12}\mathrm{CO}(2-1)$ integrated intensity map with a diameter of 6.3 pc at the putative position of the SMBH. However, we find that a dense gas tracer CS(5 − 4) peaks at the galaxy center, filling in the ${}^{12}\mathrm{CO}(2-1)$-attenuated hole. Holes like this one are observed in other galaxies, and our observations suggest these may be caused by changing excitation conditions rather than a true absence of molecular gas around the nucleus.

X-ray properties of He II 1640 emitting galaxies in VANDELS

ArXiv 2003.138 (2020)

Authors:

A Saxena, L Pentericci, D Schaerer, R Schneider, R Amorin, A Bongiorno, A Calabrò, M Castellano, A Cimatti, F Cullen, A Fontana, JPU Fynbo, N Hathi, DJ McLeod, M Talia, G Zamorani

Making a Supermassive Star by Stellar Bombardment

ASTROPHYSICAL JOURNAL American Astronomical Society 892:1 (2020) ARTN 36

Authors:

Hiromichi Tagawa, Zoltan Haiman, Bence Kocsis

Abstract:

Approximately two hundred supermassive black holes (SMBHs) have been discovered within the first $\sim$Gyr after the Big Bang. One pathway for the formation of SMBHs is through the collapse of supermassive stars (SMSs). A possible obstacle to this scenario is that the collapsing gas fragments and forms a cluster of main-sequence stars. Here we raise the possibility that stellar collisions may be sufficiently frequent and energetic to inhibit the contraction of the massive protostar, avoiding strong UV radiation driven outflows, and allowing it to continue growing into an SMS. We investigate this scenario with semianalytic models incorporating star formation, gas accretion, dynamical friction from stars and gas, stellar collisions, and gas ejection. We find that when the collapsing gas fragments at a density of $\lesssim 3\times 10^{10}\,\mathrm{cm^{-3}}$, the central protostar contracts due to infrequent stellar mergers, and in turn photoevaporates the remaining collapsing gas, resulting in the formation of a $\lesssim 10^4~{\rm M_\odot}$ object. On the other hand, when the collapsing gas fragments at higher densities (expected for a metal-poor cloud with $Z\lesssim10^{-5}\,{\rm Z_\odot}$ with suppressed ${\rm H_2}$ abundance) the central protostar avoids contraction and keeps growing via frequent stellar mergers, reaching masses as high as $\sim 10^5-10^6\,{\rm M_\odot}$. We conclude that frequent stellar mergers represent a possible pathway to form massive BHs in the early universe.