Alma maging of the co (7−6) line emission in the submillimeter galaxy less 073 at z = 4.755
Astrophysical Journal American Astronomical Society 892:2 (2020) 145
Abstract:
In this paper we present our imaging observations on the CO (7−6) line and its underlying continuum emission of the young submillimeter galaxy LESS 073 at redshift 4.755, using the Atacama Large Millimeter/submillimeter Array (ALMA). At the achieved resolution of ∼1 ′′ .2 × 0 ′′ .9 (8 × 6 kpc2 ), the CO (7−6) emission is largely unresolved (with a deconvolved size of 1′′ .1(±0 ′′ .5) × 0 ′′ .9(±0 ′′ .8).), and the continuum emission is totally unresolved. The CO (7−6) line emission has an integrated flux of 0.86 ± 0.08 Jy km s−1 , and a line width of 343 ± 40 km s−1 . The continuum emission has a flux density of 0.51 mJy. By fitting the observed far-infrared (FIR) spectral energy distribution of LESS 073 with a single-temperature modified blackbody function, we obtained a dust temperature Tdust = 57.6 ± 3.5 K, 60-to-100 µm flux density ratio f60/f100 = 0.86 ± 0.08, and total infrared luminosity LIR = (5.8±0.9)×1012 L⊙. The SED-fit-based f60/f100 is consistent with those estimated from various line ratios as advocated by our earlier work, indicating that those proposed line-ratiobased method can be used to practically derive f60/f100 for high-z sources. The total molecular gas mass of LESS 073 is (3.3 ± 1.7) × 1010 M⊙, and the inferred gas depletion time is about 43 Myr.Intermediate-mass Black Holes' Effects on Compact Object Binaries
ASTROPHYSICAL JOURNAL American Astronomical Society 892:2 (2020) ARTN 130
Abstract:
Although their existence is not yet confirmed observationally, intermediate mass black holes (IMBHs) may play a key role in the dynamics of galactic nuclei. In this paper, we neglect the effect of the nuclear star cluster itself and investigate only how a small reservoir of IMBHs influences the secular dynamics of stellar-mass black hole binaries, using N-body simulations. We show that our simplifications are valid and that the IMBHs significantly enhance binary evaporation by pushing the binaries into the Hill-unstable region of parameter space, where they are separated by the SMBH's tidal field. For binaries in the S-cluster region of the Milky Way, IMBHs drive the binaries to merge in up to 1-6% of cases, assuming five IMBHs within 5 pc of mass 10,000 solar masses each. Observations of binaries in the Galactic center may strongly constrain the population of IMBHs therein.Early Low-mass Galaxies and Star-cluster Candidates at z ∼ 6–9 Identified by the Gravitational-lensing Technique and Deep Optical/Near-infrared Imaging
The Astrophysical Journal American Astronomical Society 893:1 (2020) 60
Effective spin distribution of black hole mergers in triples
Monthly Notices of the Royal Astronomical Society 493:3 (2020) 3920-3931
Abstract:
© 2020 The Author(s). Many astrophysical scenarios have been proposed to explain the several black hole (BH) and neutron star binary mergers observed via gravitational waves (GWs) by the LIGO-Virgo collaboration. Contributions from various channels can be statistically disentangled by mass, spin, eccentricity, and redshift distributions of merging binaries. In this paper,we investigate the signatures of BH-BH binary mergers induced by a third companion through the Lidov-Kozai mechanism in triple systems. We adopt different prescriptions for the supernovae natal kicks and consider different progenitor metallicities and initial orbital parameters. We show that the typical eccentricity in the LIGO band is 0.01-0.1 and that the merger rate is in the range 0.008-9Gpc-3 yr-1, depending on the natal kick prescriptions and progenitor metallicity. Furthermore, we find that the typical distribution of effective projected spin is peaked at Xeff ~ 0 with significant tails. We show that the triple scenario could reproduce the distribution of Xeff. We find that the triple channel may be strongly constrained by the misalignment angle between the binary component spins in future detections with spin precession.Simulating JWST/NIRCam Color Selection of High-redshift Galaxies
The Astrophysical Journal American Astronomical Society 892:2 (2020) 125