The H  i morphology and stellar properties of strongly barred galaxies: support for bar quenching in massive spirals

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 492:4 (2020) 4697-4715

Authors:

L Newnham, Kelley M Hess, Karen L Masters, Sandor Kruk, Samantha J Penny, Tim Lingard, RJ Smethurst

Thermal and radiation driving can produce observable disc winds in hard-state X-ray binaries

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 492:4 (2020) 5271-5279

Authors:

Nick Higginbottom, Christian Knigge, Stuart A Sim, Knox S Long, James H Matthews, Henrietta A Hewitt, Edward J Parkinson, Sam W Mangham

Simulating JWST/NIRCam Color Selection of High-Redshift Galaxies

(2020)

Authors:

Kevin N Hainline, Raphael E Hviding, Marcia Rieke, Irene Shivaei, Ryan Endsley, Emma Curtis-Lake, Renske Smit, Christina C Williams, Stacey Alberts, Kristan NK Boyett, Andrew J Bunker, Eiichi Egami, Michael V Maseda, Sandro Tacchella, Christopher NA Willmer

Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: technical specifications and performance forecasts

Publications of the Astronomical Society of Australia Cambridge University Press 37 (2020) e007

Authors:

David J Bacon, Richard A Battye, Philip Bull, Stefano Camera, Pedro Ferreira, Ian Harrison, David Parkinson, Alkistis Pourtsidou, Mario G Santos, Laura Wolz, Filipe Abdalla, Yashar Akrami, David Alonso, Sambatra Andrianomena, Mario Ballardini, Jose Luis Bernal, Daniele Bertacca, Carlos AP Bengaly, Anna Bonaldi, Camille Bonvin, Michael L Brown, Emma Chapman, Song Chen, Xuelei Chen, Steven Cunnington, Tamara M Davis, Clive Dickinson, Jose Fonseca, Keith Grainge, Stuart Harper, Matthew Jarvis, Roy Maartens, Natasha Maddox, Hamsa Padmanabhan, Jonathan R Pritchard, Alvise Raccanelli, Marzia Rivi, Sambit Roychowdhury, Martin Sahlen, Dominik J Schwarz, Thilo M Siewert, Matteo Viel, Francisco Villaescusa-Navarro, Yidong Xu, Daisuke Yamauchi, Joe Zuntz, Square Kilometre Array Cosmology Science Working Group

Abstract:

We present a detailed overview of the cosmological surveys that we aim to carry out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5 000 deg2; a wide and deep continuum galaxy and HI intensity mapping (IM) survey over 20 000 deg2 from z = 0.35 to 3; and a deep, high-redshift HI IM survey over 100 deg2 from z = 3 to 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to z ~ 3 with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to z = 6. These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical and near-infrared (NIR) surveys like Euclid, LSST, and WFIRST leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.

How to quench a dwarf galaxy: The impact of inhomogeneous reionization on dwarf galaxies and cosmic filaments

Monthly Notices of the Royal Astronomical Society Oxford University Press 494:2 (2020) 2200-2220

Authors:

H Katz, M Ramsoy, J Rosdahl, T Kimm, J Blaizot, Haehnelt, L Michel-Dansac, T Garel, C Laigle, JULIEN Devriendt, A Slyz

Abstract:

We use the SPHINX suite of high-resolution cosmological radiation hydrodynamics simulations to study how spatially and temporally inhomogeneous reionization impacts the baryonic content of dwarf galaxies and cosmic filaments. We compare simulations with and without stellar radiation to isolate the effects of radiation feedback from that of supernova, cosmic expansion, and numerical resolution. We find that the gas content of cosmic filaments can be reduced by more than 80 per cent following reionization. The gas inflow rates into haloes with Mvir≲108M⊙ are strongly affected and are reduced by more than an order of magnitude compared to the simulation without reionization. A significant increase in gas outflow rates is found for halo masses Mvir≲7×107M⊙⁠. Our simulations show that inflow suppression (i.e. starvation), rather than photoevaporation, is the dominant mechanism by which the baryonic content of high-redshift dwarf galaxies is regulated. At fixed redshift and halo mass, there is a large scatter in the halo baryon fractions that is entirely dictated by the timing of reionization in the local region surrounding a halo which can change by Δz ≳ 3 at fixed mass. Finally, although the gas content of high-redshift dwarf galaxies is significantly impacted by reionization, we find that most haloes with Mvir≲108M⊙ can remain self-shielded and form stars long after reionization, until their local gas reservoir is depleted, suggesting that Local Group dwarf galaxies do not necessarily exhibit star formation histories that peak prior to z = 6. Significantly larger simulation boxes will be required to capture the full process of reionization and understand how our results translate to environments not probed by our current work.