Laser Tomographic AO system for an integral field spectrograph on the E-ELT: ATLAS project
AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)
Abstract:
ATLAS is a generic Laser Tomographic AO (LTAO) system for the E-ELT. Based on modular, relatively simple, and yet innovative concepts, it aims at providing diffraction-limited images in the near infra-red for a close to 100 percent sky coverage.Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from the Herschel-ATLAS
Monthly Notices of the Royal Astronomical Society 415:4 (2011) 3473-3484
Abstract:
We present Herschel-Spectral and Photometric Imaging Receiver (SPIRE) Fourier transform spectrometer (FTS) and radio follow-up observations of two Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS)-detected strongly lensed distant galaxies. In one of the targeted galaxies H-ATLAS J090311.6+003906 (SDP.81), we detect [Oiii]88μm and [Cii]158μm lines at a signal-to-noise ratio of ~5. We do not have any positive line identification in the other fainter target H-ATLAS J091305.0-005343 (SDP.130). Currently, SDP.81 is the faintest submillimetre galaxy with positive line detections with the FTS, with continuum flux just below 200mJy in the 200-600μm wavelength range. The derived redshift of SDP.81 from the two detections isz= 3.043 ± 0.012, in agreement with ground-based CO measurements. This is the first detection byHerschelof the [Oiii]88μm line in a galaxy at redshift higher than 0.05. Comparing the observed lines and line ratios with a grid of photodissociation region (PDR) models with different physical conditions, we derive the PDR cloud densityn≈ 2000cm-3 and the far-ultraviolet ionizing radiation fieldG0≈ 200 (in units of the Habing field - the local Galactic interstellar radiation field of 1.6 × 10-6 W m-2). Using the CO-derived molecular mass and the PDR properties, we estimate the effective radius of the emitting region to be 500-700pc. These characteristics are typical for star-forming, high-redshift galaxies. The radio observations indicate that SDP.81 deviates significantly from the local far-infrared/radio (FIR/radio) correlation, which hints that some fraction of the radio emission is coming from an active galactic nucleus (AGN). The constraints on the source size from millimetre-wave observations put a very conservative upper limit of the possible AGN contribution to less than 33 per cent. These indications, together with the high [Oiii]/FIR ratio and the upper limit of [Oi]63μm/[Cii]158μm, suggest that some fraction of the ionizing radiation is likely to originate from the AGN. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.Star-forming galaxies at z≈ 8-9 from Hubble Space Telescope/WFC3: Implications for reionization
Monthly Notices of the Royal Astronomical Society 414:2 (2011) 1455-1466
Abstract:
We present a search for galaxies at 7.6 < z < 9.8 using the latest Hubble Space Telescope/Wide Field Camera 3 (WFC3) near-infrared data, based on the Lyman-break technique. We search for galaxies which have large (Y-J) colours (the 'Y-drops') on account of the Lyman α forest absorption, and with (J-H) colours inconsistent with being low-redshift contaminants. We identify 24 candidates at redshift z≈ 8-9 (15 are robust and a further nine more marginal but consistent with being high redshift) over an area of ≈50arcmin2. Previous searches for Y-drops with WFC3 have focused only on the Hubble Ultra Deep Field, and our larger survey (involving two other nearby deep fields and a wider area survey) has trebled the number of robust Y-drop candidates. For the first time, we have sufficient z≈ 8-9 galaxies to fit both φ* and M* of the UV Schechter luminosity function. There is evidence for evolution in this luminosity function from z= 6-7 to z= 8-9, in the sense that there are fewer UV-bright galaxies at z≈ 8-9, consistent with an evolution mainly in M*. The candidate z≈ 8-9 galaxies we detect have insufficient ionizing flux to reionize the Universe, and it is probable that galaxies below our detection limit provide a significant UV contribution. The faint-end slope, α, is not well constrained. However, adopting a similar faint-end slope to that determined at z= 3-6 (α=-1.7) and a Salpeter initial mass function (IMF), then the ionizing photon budget still falls short if fesc < 0.5, even integrating down to MUV=-8. A steeper faint-end slope or a low-metallicity population (or a top-heavy IMF) might still provide sufficient photons for star-forming galaxies to reionize the Universe, but confirmation of this might have to await the James Webb Space Telescope. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.Testing the limit of AO for ELTs: Diffraction limited astronomy in the red optical
AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)
Abstract:
Many of the proposed science cases for extremely large telescopes (ELT) are only possible because of the unprecedented sensitivity and spatial resolution due to advanced, e.g. tomographic and multi conjugate, adaptive optic (AO) systems. Current AO systems on 8-10 m telescopes work best at wavelengths longward of 1 μm with Strehl ratios ≥ 15%. At red-optical wavelengths, e.g. in the I band (0.8 μm), the Strehl ratio is at best a few percent. The AO point spread function (PSF) typically has a diffraction-limited core superimposed on the seeing halo, however, for a 5% Strehl ratio the core has a very low intensity above the seeing halo. At an ELT, due to a 3-4 times higher angular resolution, the diffraction limited PSF core of only 5% Strehl ratio stands more prominently atop the shallow seeing halo leading to almost diffraction limited image quality even at low Strehl ratios. Prominent ELT science cases that use the Calcium triplet can exploit this gain in spatial resolution in the red-optical: stellar populations in dense environments or crowded fields; and the case of intermediate mass black holes in nuclear and globular stellar clusters, as well as (super-) massive black holes in galaxies.The ATLAS3D project - I. A volume-limited sample of 260 nearby early-type galaxies: Science goals and selection criteria
Monthly Notices of the Royal Astronomical Society 413:2 (2011) 813-836