Formation of slowly rotating early-type galaxies via major mergers: a resolution study

Monthly Notices of the Royal Astronomical Society 406:4 (2010) 2405-2420

Authors:

M Bois, F Bournaud, E Emsellem, K Alatalo, L Blitz, M Bureau, M Cappellari, RL Davies, TA Davis, PT de Zeeuw, PA Duc, S Khochfar, D Krajnović, H Kuntschner, PY Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A Weijmans, LM Young

Abstract:

We study resolution effects in numerical simulations of gas-rich and gas-poor major mergers, and show that the formation of slowly rotating elliptical galaxies often requires a resolution that is beyond the present-day standards to be properly modelled. Our sample of equal-mass merger models encompasses various masses and spatial resolutions, ranging from about 200 pc and 105 particles per component (stars, gas and dark matter), i.e. a gas mass resolution of ∼105 M⊙, typical of some recently published major merger simulations, to up to 32 pc and ∼103 M⊙ in simulations using 2.4 × 107 collisionless particles and 1.2 × 107 gas particles, among the highest resolutions reached so far for gas-rich major merger of massive disc galaxies. We find that the formation of fast-rotating early-type galaxies, that are flattened by a significant residual rotation, is overall correctly reproduced at all such resolutions. However, the formation of slow-rotating early-type galaxies, which have a low-residual angular momentum and are supported mostly by anisotropic velocity dispersions, is strongly resolution-dependent. The evacuation of angular momentum from the main stellar body is largely missed at standard resolution, and systems that should be slow rotators are then found to be fast rotators. The effect is most important for gas-rich mergers, but is also witnessed in mergers with an absent or modest gas component (0-10 per cent in mass). The effect is robust with respect to our initial conditions and interaction orbits, and originates in the physical treatment of the relaxation process during the coalescence of the galaxies. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of gas-rich mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated. Moreover, the effect of gas in a galaxy merger is not limited to helping the survival/rebuilding of rotating disc components: at high resolution, gas actively participates in the relaxation process and the formation of slowly rotating stellar systems. © 2010 The Authors. Journal compilation © 2010 RAS.

Formation of slowly rotating elliptical galaxies in major mergers. A resolution study

AIP Conference Proceedings 1240 (2010) 405-406

Authors:

M Bois, F Bournaud, E Emsellem, K Alatalo, L Blitz, M Bureau, M Cappellari, RL Davies, TA Davis, PT De Zeeuw, J Falcón-Barroso, S Khochfar, D Krajnović, H Kuntschner, PY Lablanche, RM McDermid, R Morganti, T Naab, M Sarzi, N Scott, P Serra, RCE Van Den Bosch, G Van De Ven, A Weijmans, LM Young

Abstract:

We study resolution effects in numerical simulations of gas-rich (20% of the total baryonic mass) major mergers, and show that the formation of slowly-rotating elliptical galaxies requires a resolution that is beyond the present-day standards to be properly modelled. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of wet mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated. © 2010 American Institute of Physics.

GRB 090426: The environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609

Monthly Notices of the Royal Astronomical Society 401:2 (2010) 963-972

Authors:

EM Levesque, JS Bloom, NR Butler, DA Perley, SB Cenko, JX Prochaska, LJ Kewley, A Bunker, HW Chen, R Chornock, AV Filippenko, K Glazebrook, S Lopez, J Masiero, M Modjaz, A Morgan, D Poznanski

Abstract:

We present the discovery of an absorption-line redshift of z = 2.609 for GRB 090426, establishing the first firm lower limit to a redshift for a gamma-ray burst (GRB) with an observed duration of <2 s. With a rest-frame burst duration of T90z = 0.35 s and a detailed examination of the peak energy of the event, we suggest that this is likely (at >90 per cent confidence) a member of the short/hard phenomenological class of GRBs. From analysis of the optical-afterglow spectrum we find that the burst originated along a very low H i column density sightline, with NH i < 3.2 × 1019 cm-2. Our GRB 090426 afterglow spectrum also appears to have weaker low-ionization absorption (Si ii, C ii) than ∼95 per cent of previous afterglow spectra. Finally, we also report the discovery of a blue, very luminous, star-forming putative host galaxy (∼2L *) at a small angular offset from the location of the optical afterglow. We consider the implications of this unique GRB in the context of burst duration classification and our understanding of GRB progenitor scenarios. © 2009 RAS.

Goonhilly: A new site for e-MERLIN and the EVN

Proceedings of Science 125 (2010)

Authors:

HR Klöckner, S Rawlings, I Heywood, R Beswick, TWB Muxlow, ST Garrington, J Hatchell, MG Hoare, MJ Jarvis, I Jones, HJ Van Langevelde

Abstract:

The benefits for the e-MERLIN and EVN arrays of using antennae at the satellite communication station at Goonhilly in Cornwall are discussed. The location of this site - new to astronomy - will provide an almost equal distribution of long baselines in the east-west- and north-south directions, and opens up the possibility to get significantly improved observations of equatorial fields with e-MERLIN. These additional baselines will improve the sensitivity on a set of critical spatial scales and will increase the angular resolution of e-MERLIN by a factor of two. e-MERLIN observations, including many allocated under the e-MERLIN Legacy programme, will benefit from the enhanced angular resolution and imaging capability especially for sources close to or below the celestial equator (where ESO facilities such as ALMA will operate) of including the Goonhilly telescopes. Furthermore, the baselines formed between Goonhilly and the existing stations will close the gap between the baselines of e-MERLIN and those of the European VLBI Network (EVN) and therefore enhance the legacy value of e-MERLIN datasets.

H-ATLAS: PACS imaging for the Science Demonstration Phase

Monthly Notices of the Royal Astronomical Society 409:1 (2010) 38-47

Authors:

E Ibar, RJ Ivison, A Cava, G Rodighiero, S Buttiglione, P Temi, D Frayer, J Fritz, L Leeuw, M Baes, E Rigby, A Verma, S Serjeant, T Müller, R Auld, A Dariush, L Dunne, S Eales, S Maddox, P Panuzzo, E Pascale, M Pohlen, D Smith, GD Zotti, M Vaccari, R Hopwood, A Cooray, D Burgarella, M Jarvis

Abstract:

We describe the reduction of data taken with the PACS instrument on board the Herschel Space Observatory in the Science Demonstration Phase of the Herschel-ATLAS (H-ATLAS) survey, specifically data obtained for a 4 × 4 deg2 region using Herschel's fast-scan (60 arcsec s-1) parallel mode. We describe in detail a pipeline for data reduction using customized procedures within hipe from data retrieval to the production of science-quality images. We found that the standard procedure for removing cosmic ray glitches also removed parts of bright sources and so implemented an effective two-stage process to minimize these problems. The pronounced 1/f noise is removed from the timelines using 3.4- and 2.5-arcmin boxcar high-pass filters at 100 and 160 μm. Empirical measurements of the point spread function (PSF) are used to determine the encircled energy fraction as a function of aperture size. For the 100- and 160-μm bands, the effective PSFs are ~9 and ~13 arcsec (FWHM), and the 90-per cent encircled energy radii are 13 and 18 arcsec. Astrometric accuracy is good to ≤2 arcsec. The noise in the final maps is correlated between neighbouring pixels and rather higher than advertised prior to launch. For a pair of cross-scans, the 5σ point-source sensitivities are 125-165 mJy for 9-13 arcsec radius apertures at 100 μm and 150-240 mJy for 13-18 arcsec radius apertures at 160 μm. © 2010 The Authors. Journal compilation © 2010 RAS.