On the nature of the short-duration GRB 050906
Monthly Notices of the Royal Astronomical Society 384:2 (2008) 541-547
Abstract:
We present deep optical and infrared (IR) observations of the short-duration GRB 050906. Although no X-ray or optical/IR afterglow was discovered to deep limits, the error circle of the gamma-ray burst (GRB) (as derived from the Swift Burst Alert Telescope, or BAT) is unusual in containing the relatively local starburst galaxy IC328. This makes GRB 050906 a candidate burst from a soft gamma-ray repeater (SGR), similar to the giant flare from SGR 1806-20. The probability of chance alignment of a given BAT position with such a galaxy is small (≲1 per cent), although the size of the error circle (2.6 arcmin radius) is such that a higher z origin cannot be ruled out. Indeed, the error circle also includes a moderately rich galaxy cluster at z = 0.43, which is a plausible location for the burst given the apparent preference that short-duration GRBs have for regions of high mass density. No residual optical or IR emission has been observed, in the form of either an afterglow or a later time emission from any associated supernova-like event. We discuss the constraints these limits place on the progenitor of GRB 050906 based on the expected optical signatures from both SGRs and merging compact object systems. © 2008 RAS.Structure and dynamics of galaxies with a low surface-brightness disc - I. The stellar and ionized-gas kinematics
Monthly Notices of the Royal Astronomical Society 387:3 (2008) 1099-1116
Abstract:
Photometry and long-slit spectroscopy are presented for a sample of six galaxies with a low surface-brightness stellar disc and a bulge. The characterizing parameters of the bulge and disc components were derived by means of a two-dimensional photometric decomposition of the images of the sample galaxies. Their surface-brightness distribution was assumed to be the sum of the contribution of a Sérsic bulge and an exponential disc, with each component being described by elliptical and concentric isophotes of constant ellipticity and position angle. The stellar and ionized-gas kinematics were measured along the major and minor axes in half of the sample galaxies, whereas the other half was observed only along two diagonal axes. Spectra along two diagonal axes were obtained also for one of the objects with major and minor axis spectra. The kinematic measurements extend in the disc region out to a surface-brightness level μR ≈ 24 mag arcsec-2, reaching in all cases the flat part of the rotation curve. The stellar kinematics turns out to be more regular and symmetric than the ionized-gas kinematics, which often shows the presence of non-circular, off-plane and non-ordered motions. This raises the question about the reliability of the use of the ionized gas as the tracer of the circular velocity in the modelling of the mass distribution, in particular in the central regions of low surface-brightness galaxies. © 2008 The Authors.The SAURON project - XII. Kinematic substructures in early-type galaxies: Evidence for discs in fast rotators
Monthly Notices of the Royal Astronomical Society 390:1 (2008) 93-117
Abstract:
We analysed two-dimensional maps of 48 early-type galaxies obtained with the SAURON and OASIS integral-field spectrographs using kinemetry, a generalization of surface photometry to the higher order moments of the line-of-sight velocity distribution (LOSVD). The maps analysed include: reconstructed image, mean velocity, velocity dispersion, h3 and h4 Gauss-Hermite moments. Kinemetry is a good method to recognize structures otherwise missed by using surface photometry, such as embedded discs and kinematic subcomponents. In the SAURON sample, we find that 31 per cent of early-type galaxies are single component systems. 91 per cent of the multicomponents systems have two kinematic subcomponents, the rest having three. In addition, 29 per cent of galaxies have kinematically decoupled components, nuclear components with significant kinematic twists. We differentiate between slow and fast rotators using velocity maps only and find that fast-rotating galaxies contain discs with a large range in mass fractions to the main body. Specifically, we find that the velocity maps of fast rotators closely resemble those of inclined discs, except in the transition regions between kinematic subcomponents. This deviation is measured with the kinemetric k 5/k1 ratio, which is large and noisy in slow rotators and about 2 per cent in fast rotators. In terms of E/S0 classification, this means that 74 per cent of Es and 92 per cent of S0s have components with disc-like kinematics. We suggest that differences in k5/k1 values for the fast and slow rotators arise from their different intrinsic structure which is reflected on the velocity maps. For the majority of fast rotators, the kinematic axial ratios are equal to or less than their photometric axial ratios, contrary to what is predicted with isotropic Jeans models viewed at different inclinations. The position angles of fast rotators are constant, while they vary abruptly in slow rotators. Velocity dispersion maps of face-on galaxies have shapes similar to the distribution of light. Velocity dispersion maps of the edge-on fast rotators and all slow rotators show differences which can only be partially explained with isotropic models and, in the case of fast rotators, often require additional cold components. We constructed local (bin-by-bin) h3-V/σ and h4-V/σ diagrams from SAURON observations. We confirm the classical anticorrelation of h3 and V/σ, but we also find that h3 is almost zero in some objects or even weakly correlated with V/σ. The distribution of h4 for fast and slow rotators is mildly positive on average. In general, fast rotators contain flattened components characterized by a disc-like rotation. The difference between slow and fast rotators is traceable throughout all moments of the LOSVD, with evidence for different intrinsic shapes and orbital contents and, hence, likely different evolutionary paths. © 2008 RAS.The physical properties of LBGs at z>5: outflows and the "pre-enrichment problem"
Pathways through an Eclectic Universe Astronomical Society of the Pacific ASP Conference Series: 390 (2008) 431-434
Abstract:
We discuss the properties of Lyman Break galaxies (LBGs) at z>5 as determined from disparate fields covering approximately 500 sq. arcmin. While the broad characteristics of the LBG population has been discussed extensively in the literature, such as luminosity functions and clustering amplitude, we focus on the detailed physical properties of the sources in this large survey (>100 with spectroscopic redshifts). Specifically, we discuss ensemble mass estimates, stellar mass surface densities, core phase space densities, star-formation intensities, characteristics of their stellar populations, etc as obtained from multi-wavelength data (rest-frame UV through optical) for a subsample of these galaxies. In particular, we focus on evidence that these galaxies drive vigorous outflows and speculate that this population may solve the so-called ``pre-enrichment problem''. The general picture that emerges from these studies is that these galaxies, observed about 1 Gyr after the Big Bang, have properties consistent with being the progenitors of the densest stellar systems in the local Universe -- the centers of old bulges and early type galaxies.The properties of 70 μm-selected high-redshift galaxies in the Extended Groth Strip
Monthly Notices of the Royal Astronomical Society 385:2 (2008) 1015-1028