Large sSynoptic Survey Telescope Galaxies Science Roadmap

arXiv

Authors:

BE Robertson, M Banerji, MC Cooper, Roger Davies, SP Driver, HC Ferguson, E Gawiser, S Kaviraj, JH Knapen, Chris Lintott, J Lotz, JA Newman, DJ Norman, N Padilla, SJ Schmidt, GP Smith, JA Tyson, Aprajita Verma, I Zehavi, L Armus, C Avestruz, LF Barrientos, Rebecca Bowler, MN Bremer

Abstract:

The Large Synoptic Survey Telescope (LSST) will enable revolutionary studies of galaxies, dark matter, and black holes over cosmic time. The LSST Galaxies Science Collaboration has identified a host of preparatory research tasks required to leverage fully the LSST dataset for extragalactic science beyond the study of dark energy. This Galaxies Science Roadmap provides a brief introduction to critical extragalactic science to be conducted ahead of LSST operations, and a detailed list of preparatory science tasks including the motivation, activities, and deliverables associated with each. The Galaxies Science Roadmap will serve as a guiding document for researchers interested in conducting extragalactic science in anticipation of the forthcoming LSST era.

Magnetogenesis at Cosmic Dawn: Tracing the Origins of Cosmic Magnetic Fields

MNRAS

Authors:

Harley Katz, Sergio Martin-Alvarez, Julien Devriendt, Adrianne Slyz, Taysun Kimm

Abstract:

Despite their ubiquity, the origin of cosmic magnetic fields remains unknown. Various mechanisms have been proposed for their existence including primordial fields generated by inflation, or amplification and injection by compact astrophysical objects. Separating the potential impact of each magnetogenesis scenario on the magnitude and orientation of the magnetic field and their impact on gas dynamics may give insight into the physics that magnetised our Universe. In this work, we demonstrate that because the induction equation and solenoidal constraint are linear with $B$, the contribution from different sources of magnetic field can be separated in cosmological magnetohydrodynamics simulations and their evolution and influence on the gas dynamics can be tracked. Exploiting this property, we develop a magnetic field tracer algorithm for cosmological simulations that can track the origin and evolution of different components of the magnetic field. We present a suite of cosmological magnetohydrodynamical RAMSES simulations that employ this algorithm where the primordial field strength is varied to determine the contributions of the primordial and supernovae-injected magnetic fields to the total magnetic energy as a function of time and spatial location. We find that, for our specific model, the supernova-injected fields rarely penetrate far from haloes, despite often dominating the total magnetic energy in the simulations. The magnetic energy density from the supernova-injected field scales with density with a power-law slope steeper than 4/3 and often dominates the total magnetic energy inside of haloes. However, the star formation rates in our simulations are not affected by the presence of magnetic fields, for the ranges of primordial field strengths examined. These simulations represent a first demonstration of the magnetic field tracer algorithm (abridged).

Modelling baryonic feedback for survey cosmology

Authors:

NE Chisari, AJ Mead, S Joudaki, P Ferreira, A Schneider, J Mohr, T Tröster, D Alonso, IG McCarthy, S Martin-Alvarez, JULIEN Devriendt, A Slyz, MPV Daalen

Abstract:

Observational cosmology in the next decade will rely on probes of the distribution of matter in the redshift range between $0

Multimessenger science opportunities with mHz gravitational waves

Authors:

John Baker, Zoltán Haiman, Elena Maria Rossi, Edo Berger, Niel Brandt, Elmé Breedt, Katelyn Breivik, Maria Charisi, Andrea Derdzinski, Daniel J D'Orazio, Saavik Ford, Jenny E Greene, J Colin Hill, Kelly Holley-Bockelmann, Joey Shapiro Key, Bence Kocsis, Thomas Kupfer, Shane Larson, Piero Madau, Thomas Marsh, Barry McKernan, Sean T McWilliams, Priyamvada Natarajan, Samaya Nissanke, Scott Noble

Abstract:

LISA will open the mHz band of gravitational waves (GWs) to the astronomy community. The strong gravity which powers the variety of GW sources in this band is also crucial in a number of important astrophysical processes at the current frontiers of astronomy. These range from the beginning of structure formation in the early universe, through the origin and cosmic evolution of massive black holes in concert with their galactic environments, to the evolution of stellar remnant binaries in the Milky Way and in nearby galaxies. These processes and their associated populations also drive current and future observations across the electromagnetic (EM) spectrum. We review opportunities for science breakthroughs, involving either direct coincident EM+GW observations, or indirect multimessenger studies. We argue that for the US community to fully capitalize on the opportunities from the LISA mission, the US efforts should be accompanied by a coordinated and sustained program of multi-disciplinary science investment, following the GW data through to its impact on broad areas of astrophysics. Support for LISA-related multimessenger observers and theorists should be sized appropriately for a flagship observatory and may be coordinated through a dedicated mHz GW research center.

Multimessenger science opportunities with mHz gravitational waves

Authors:

John Baker, Zoltán Haiman, Elena Maria Rossi, Edo Berger, Niel Brandt, Elmé Breedt, Katelyn Breivik, Maria Charisi, Andrea Derdzinski, Daniel J D'Orazio, Saavik Ford, Jenny E Greene, J Colin Hill, Kelly Holley-Bockelmann, Joey Shapiro Key, Bence Kocsis, Thomas Kupfer, Shane Larson, Piero Madau, Thomas Marsh, Barry McKernan, Sean T McWilliams, Priyamvada Natarajan, Samaya Nissanke, Scott Noble