Tracing metallicities in the Universe with the James Webb Space Telescope

Chapter in The Metal-Rich Universe, Cambridge University Press (CUP) (2008) 212-224

Authors:

R Maiolino, S Arribas, T Böker, A Bunker, S Charlot, G de Marchi, P Ferruit, M Franx, P Jakobsen, H Moseley, T Nagao, L Origlia, B Rauscher, M Regan, HW Rix, CJ Willott

Multimass schemes for collisionless N-body simulations

Monthly Notices of the Royal Astronomical Society 387:4 (2008) 1719-1726

Authors:

M Zhang, J Magorrian

Abstract:

We present a general scheme for constructing Monte Carlo realizations of equilibrium, collisionless galaxy models with known distribution function (DF) f 0. Our method uses importance sampling to find the sampling DF f s that minimizes the mean-square formal errors in a given set of projections of the DF f 0. The result is a multimass N-body realization of the galaxy model in which 'interesting' regions of phase space are densely populated by lots of low-mass particles, increasing the effective N there, and less interesting regions by fewer, higher mass particles. As a simple application, we consider the case of minimizing the shot noise in estimates of the acceleration field for an N-body model of a spherical Hernquist model. Models constructed using our scheme easily yield a factor of ~100 reduction in the variance at the central acceleration field when compared to a traditional equal-mass model with the same number of particles. When evolving both models with a real N-body code, the diffusion coefficients in our model are reduced by a similar factor. Therefore, for certain types of problems, our scheme is a practical method for reducing the two-body relaxation effects, thereby bringing the N-body simulations closer to the collisionless ideal. © 2008 The Author. Journal compilation © 2008 RAS.

Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes.

Physical review letters 101:4 (2008) 041101

Authors:

Bence Kocsis, Abraham Loeb

Abstract:

Mergers of supermassive black hole binaries release peak power of up to approximately 10(57) erg s(-1) in gravitational waves (GWs). As the GWs propagate through ambient gas, they induce shear and a small fraction of their power is dissipated through viscosity. The dissipated heat appears as electromagnetic (EM) radiation, providing a prompt EM counterpart to the GW signal. For thin accretion disks, the GW heating rate exceeds the accretion power at distances farther than approximately 10(3) Schwarzschild radii, independently of the accretion rate and viscosity coefficient.

Periastron Precession Measurements in Transiting Extrasolar Planetary Systems at the Level of General Relativity

(2008)

Authors:

András Pál, Bence Kocsis

Integral field unit spectrograph for extremely large telescopes

Publications of the Astronomical Society of the Pacific 120:868 (2008) 634-643

Authors:

I Montilla, E Pécontal, J Devriendt, R Bacon

Abstract:

We have carried out a concept study for a wide-field monolithic integral field unit (IFU) spectrograph for extremely large telescopes (ELTs). We target in this paper the technological challenges that have to be faced in order to build such an instrument, focusing on the adaptive optics (AO) requirements, the image slicer technology, and the detectors status. We also address the main science drivers, together with the concept design and the expected performance applied to the European-ELT (E-ELT) case. A monolithic wide-field spectrograph provides a continuous field of view (FOV) separated by a field splitter in several subfields, each of them feeding a module featuring an image slicer, a collimator and a spectrograph. The use of image slicers provides 3D spectrographic images of the complete FOV, allowing for detection and study of sources without need of targeting them, a very useful property especially for the deep observation of faint high-redshift objects, whose density on the sky is expected to be quite high. In light of this discussion, we suggest the advantages of using shorter wavelengths and its implication in both the scientific program and the budget. © 2008. The Astronomical Society of the Pacific. All rights reserved.