The M-sigma and M-L Relations in Galactic Bulges and Determinations of their Intrinsic Scatter
(2009)
All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data
Physical Review Letters American Physical Society (APS) 102:11 (2009) 111102
All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data.
Phys Rev Lett 102:11 (2009) 111102
Abstract:
We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1100 Hz and with the frequency's time derivative in the range -5 x 10{-9}-0 Hz s{-1}. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semicoherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 10{-24} are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 10{-6}, the search is sensitive to distances as great as 500 pc.SPACE: The spectroscopic all-sky cosmic explorer
Experimental Astronomy 23:1 (2009) 39-66
Abstract:
We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims to produce the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts for more than half a billion galaxies at 0∈<∈z∈<∈2 down to AB~23 over 3π sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB~26 and at 2∈<∈z∈<∈10∈+. These goals are unreachable with ground-based observations due to the ≈500 times higher sky background (see e.g. Aldering, LBNL report number LBNL-51157, 2001). To achieve the main science objectives, SPACE will use a 1.5 m diameter Ritchey-Chretien telescope equipped with a set of arrays of Digital Micro-mirror Devices covering a total field of view of 0.4 deg2, and will perform large-multiplexing multi-object spectroscopy (e.g. ≈6000 targets per pointing) at a spectral resolution of R~400 as well as diffraction-limited imaging with continuous coverage from 0.8 to 1.8 μm. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover. SPACE will also place high accuracy constraints on the dark energy equation of state parameter and its evolution by measuring the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, and high-z galaxy clusters. The datasets from the SPACE mission will represent a long lasting legacy for the whole astronomical community whose data will be mined for many years to come. © 2008 Springer Science+Business Media B.V.The space infrared telescope for cosmology and astrophysics: SPICA A joint mission between JAXA and ESA
Experimental Astronomy Springer Nature 23:1 (2009) 193