Single Nitrogen-Vacancy Imaging in Nanodiamonds for Multimodal Sensing
BIOPHYSICAL JOURNAL 116:3 (2019) 174A-174A
Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria
Nature Communications Nature Publishing Group 9 (2018) Article number 1478
Abstract:
Transcription in bacteria is controlled by multiple molecular mechanisms that precisely regulate gene expression. It has been recently shown that initial RNA synthesis by the bacterial RNA polymerase (RNAP) is interrupted by pauses; however, the pausing determinants and the relationship of pausing with productive and abortive RNA synthesis remain poorly understood. Using single-molecule FRET and biochemical analysis, here we show that the pause encountered by RNAP after the synthesis of a 6-nt RNA (ITC6) renders the promoter escape strongly dependent on the NTP concentration. Mechanistically, the paused ITC6 acts as a checkpoint that directs RNAP to one of three competing pathways: productive transcription, abortive RNA release, or a new unscrunching/scrunching pathway. The cyclic unscrunching/scrunching of the promoter generates a long-lived, RNA-bound paused state; the abortive RNA release and DNA unscrunching are thus not as tightly linked as previously thought. Finally, our new model couples the pausing with the abortive and productive outcomes of initial transcription.Ribosome phenotypes for rapid classification of antibiotic-susceptible and resistant strains of Escherichia coli
Communications Biology Nature Research 8:1 (2025) 319
Abstract:
Rapid antibiotic susceptibility tests (ASTs) are an increasingly important part of clinical care as antimicrobial resistance (AMR) becomes more common in bacterial infections. Here, we use the spatial distribution of fluorescently labelled ribosomes to detect intracellular changes associated with antibiotic susceptibility in E. coli cells using a convolutional neural network (CNN). By using ribosome-targeting probes, one fluorescence image provides data for cell segmentation and susceptibility phenotyping. Using 60,382 cells from an antibiotic-susceptible laboratory strain of E. coli, we showed that antibiotics with different mechanisms of action result in distinct ribosome phenotypes, which can be identified by a CNN with high accuracy (99%, 98%, 95%, and 99% for ciprofloxacin, gentamicin, chloramphenicol, and carbenicillin). With 6 E. coli strains isolated from bloodstream infections, we used 34,205 images of ribosome phenotypes to train a CNN that could classify susceptible cells with 91% accuracy and resistant cells with 99% accuracy. Such accuracies correspond to the ability to differentiate susceptible and resistant samples with 99% confidence with just 2 cells, meaning that this method could eliminate lengthy culturing steps and could determine susceptibility with 30 min of antibiotic treatment. The ribosome phenotype method should also be able to identify phenotypes in other strains and species.Tunable fluorogenic DNA probes drive fast and high-resolution single-molecule fluorescence imaging
(2025)
Infection Inspection: using the power of citizen science for image-based prediction of antibiotic resistance in Escherichia coli treated with ciprofloxacin.
Scientific reports Springer Science and Business Media LLC 14:1 (2024) 19543