Single Nitrogen-Vacancy Imaging in Nanodiamonds for Multimodal Sensing

BIOPHYSICAL JOURNAL 116:3 (2019) 174A-174A

Authors:

Maabur Sow, Horst Steuer, Barak Gilboa, Laia Gines, Soumen Mandal, Sanmi Adekanye, Jason M Smith, Oliver A Williams, Achillefs N Kapanidis

Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria

Nature Communications Nature Publishing Group 9 (2018) Article number 1478

Authors:

David Dulin, David Bauer, Anssi Malinen, Jacob Bakermans, Martin Kaller, Z Morichaud, I Petushkov, M Depken, K Brodolin, A Kulbachinskiy, Achillefs Kapanidis

Abstract:

Transcription in bacteria is controlled by multiple molecular mechanisms that precisely regulate gene expression. It has been recently shown that initial RNA synthesis by the bacterial RNA polymerase (RNAP) is interrupted by pauses; however, the pausing determinants and the relationship of pausing with productive and abortive RNA synthesis remain poorly understood. Using single-molecule FRET and biochemical analysis, here we show that the pause encountered by RNAP after the synthesis of a 6-nt RNA (ITC6) renders the promoter escape strongly dependent on the NTP concentration. Mechanistically, the paused ITC6 acts as a checkpoint that directs RNAP to one of three competing pathways: productive transcription, abortive RNA release, or a new unscrunching/scrunching pathway. The cyclic unscrunching/scrunching of the promoter generates a long-lived, RNA-bound paused state; the abortive RNA release and DNA unscrunching are thus not as tightly linked as previously thought. Finally, our new model couples the pausing with the abortive and productive outcomes of initial transcription.

Structure of the conjugation surface exclusion protein TraT

Communications Biology Springer Nature 8:1 (2025) 1702

Authors:

Nicolas Chen, Alfredas Bukys, Camilla AK Lundgren, Justin C Deme, Hafez El Sayyed, Achillefs N Kapanidis, Susan M Lea, Ben Berks

Abstract:

Conjugal transfer of plasmids between bacteria is a major route for the spread of antimicrobial resistance. Many conjugative plasmids encode exclusion systems that inhibit redundant conjugation. In incompatibility group F (IncF) plasmids surface exclusion is mediated by the outer membrane protein TraT. Here we report the cryoEM structure of the TraT exclusion protein complex from the canonical F plasmid of Escherichia coli. TraT is a hollow homodecamer shaped like a chef’s hat. In contrast to most outer membrane proteins, TraT spans the outer membrane using transmembrane a-helices. We develop a microscopy-based conjugation assay to  probe the effects of directed mutagenesis on TraT. Our analysis provides no support for the idea that TraT has specific interactions with partner proteins. Instead, we infer that TraT is most likely to function by physical interference with conjugation. This work provides structural insight into a natural inhibitor of microbial gene transfer.

High-throughput single-virion DNA-PAINT reveals structural diversity, cooperativity, and flexibility during selective packaging in influenza

Nucleic Acids Research Oxford University Press 53:19 (2025) gkaf1020

Authors:

Christof Hepp, Qing Zhao, Nicole Robb, Ervin Fodor, Achillefs N Kapanidis

Abstract:

Influenza A, a negative-sense RNA virus, has a genome that consists of eight single-stranded RNA segments. Influenza co-infections can result in reassortant viruses that contain gene segments from multiple strains, causing pandemic outbreaks with severe consequences for human health. The outcome of reassortment is likely influenced by a selective sequence-specific genome packaging mechanism. To uncover the contributions of individual segment pairings to selective packaging, we set out to statistically analyse packaging defects and inter-segment distances in individual A/Puerto Rico/8/34 (H1N1) (PR8) virus particles. To enable such analysis, we developed a multiplexed DNA-PAINT approach capable of assessing the segment stoichiometry of >10 000 individual virus particles in one experiment; our approach can also spatially resolve the individual segments inside complete virus particles with a localization precision of ∼10 nm. Our results show the influenza genome can be assembled through multiple pathways in a redundant and cooperative process guided by preferentially interacting segment pairs and aided by synergistic effects that enhance genome assembly, driving it to completion. Our structural evidence indicates that the interaction strength of segment pairs affects the spatial configuration of the gene segments, which appears to be preserved in mature virions. As our method quantified the interactions of whole influenza segments instead of identifying individual sequence-based interactions, our results can serve as a template to quantify the contributions of individual sequence motifs to selective packaging.

The displacement of the σ70 finger in initial transcription is highly heterogeneous and promoter-dependent

Nucleic Acids Research Oxford University Press 53:17 (2025) gkaf857

Authors:

Anna Wang, Andrew Fletcher, Pratip Mukherjee, David C Grainger, Abhishek Mazumder, Achillefs N Kapanidis

Abstract:

Most bacterial sigma factors (σ) contain a highly conserved structural module, the 'σ-finger', which forms a loop that protrudes towards the RNA polymerase active centre in the open complex and has been implicated in pre-organization of template DNA, abortive initiation of short RNAs, initiation pausing, and promoter escape. Here, we introduce a novel single-molecule FRET (smFRET) assay to monitor σ-finger motions during transcription initiation and promoter escape. By performing real-time smFRET measurements, we determine that for all promoters studied, displacement occurs before promoter escape and can occur either before or after a clash with the extending RNA. We show that the kinetics of σ-finger displacement are highly dependent on the promoter, with implications for transcription kinetics and regulation. Analogous mechanisms may operate in the similar modules present across all kingdoms of life.