Deep Antimicrobial Susceptibility Phenotyping (DASP) Training and Evaluation Dataset, and Trained Models.

University of Oxford (2023)

Authors:

Aleksander Zagajewski, Piers Turner, Conor Feehily, Nicole Stoesser, Christoffer Nellaker, Achillefs Kapanidis

Abstract:

Dataset of microscopy images of untreated and treated E.coli lab strains and clinical isolates, and machine learning models trained on them. Corresponding publications: https://doi.org/10.1101/2022.12.08.22283219 Corresponding analysis code: https://github.com/KapanidisLab/Deep-Learning-and-Single-Cell-Phenotyping-for-Rapid-Antimicrobial-Susceptibility-Testing

The displacement of the σ70finger in initial transcription is highly heterogeneous and promoter-dependent

(2023)

Authors:

Anna Wanga, Abhishek Mazumdera, Achillefs Kapanidis

Virus detection and identification in minutes using single-particle imaging and deep learning

ACS Nano American Chemical Society (2023)

Authors:

Nicolas Shiaelis, Alexander Tometzki, Leon Peto, Andrew McMahon, Christof Hepp, Erica Bickerton, Cyril Favard, Delphine Muriaux, Monique Andersson, Sarah Oakley, Alison Vaughan, Philippa Matthews, Nicole Stoesser, Derrick Crook, Achillefs Kapanidis, Nicole Robb

Abstract:

ABSTRACT

The increasing frequency and magnitude of viral outbreaks in recent decades, epitomized by the current COVID-19 pandemic, has resulted in an urgent need for rapid and sensitive diagnostic methods. Here, we present a methodology for virus detection and identification that uses a convolutional neural network to distinguish between microscopy images of single intact particles of different viruses. Our assay achieves labeling, imaging and virus identification in less than five minutes and does not require any lysis, purification or amplification steps. The trained neural network was able to differentiate SARS-CoV-2 from negative clinical samples, as well as from other common respiratory pathogens such as influenza and seasonal human coronaviruses. Additionally, we were able to differentiate closely related strains of influenza, as well as SARS-CoV-2 variants. Single-particle imaging combined with deep learning therefore offers a promising alternative to traditional viral diagnostic and genomic sequencing methods, and has the potential for significant impact.

Virus Detection and Identification in Minutes Using Single-Particle Imaging and Deep Learning.

ACS nano (2022)

Authors:

Nicolas Shiaelis, Alexander Tometzki, Leon Peto, Andrew McMahon, Christof Hepp, Erica Bickerton, Cyril Favard, Delphine Muriaux, Monique Andersson, Sarah Oakley, Ali Vaughan, Philippa C Matthews, Nicole Stoesser, Derrick W Crook, Achillefs N Kapanidis, Nicole C Robb

Abstract:

The increasing frequency and magnitude of viral outbreaks in recent decades, epitomized by the COVID-19 pandemic, has resulted in an urgent need for rapid and sensitive diagnostic methods. Here, we present a methodology for virus detection and identification that uses a convolutional neural network to distinguish between microscopy images of fluorescently labeled intact particles of different viruses. Our assay achieves labeling, imaging, and virus identification in less than 5 min and does not require any lysis, purification, or amplification steps. The trained neural network was able to differentiate SARS-CoV-2 from negative clinical samples, as well as from other common respiratory pathogens such as influenza and seasonal human coronaviruses. We were also able to differentiate closely related strains of influenza, as well as SARS-CoV-2 variants. Additional and novel pathogens can easily be incorporated into the test through software updates, offering the potential to rapidly utilize the technology in future infectious disease outbreaks or pandemics. Single-particle imaging combined with deep learning therefore offers a promising alternative to traditional viral diagnostic and genomic sequencing methods and has the potential for significant impact.

Machine learning assisted interferometric structured illumination microscopy for dynamic biological imaging.

Nature communications 13:1 (2022) 7836

Authors:

Edward N Ward, Lisa Hecker, Charles N Christensen, Jacob R Lamb, Meng Lu, Luca Mascheroni, Chyi Wei Chung, Anna Wang, Christopher J Rowlands, Gabriele S Kaminski Schierle, Clemens F Kaminski

Abstract:

Structured Illumination Microscopy, SIM, is one of the most powerful optical imaging methods available to visualize biological environments at subcellular resolution. Its limitations stem from a difficulty of imaging in multiple color channels at once, which reduces imaging speed. Furthermore, there is substantial experimental complexity in setting up SIM systems, preventing a widespread adoption. Here, we present Machine-learning Assisted, Interferometric Structured Illumination Microscopy, MAI-SIM, as an easy-to-implement method for live cell super-resolution imaging at high speed and in multiple colors. The instrument is based on an interferometer design in which illumination patterns are generated, rotated, and stepped in phase through movement of a single galvanometric mirror element. The design is robust, flexible, and works for all wavelengths. We complement the unique properties of the microscope with an open source machine-learning toolbox that permits real-time reconstructions to be performed, providing instant visualization of super-resolved images from live biological samples.