Single-molecule and super-resolution imaging of transcription in living bacteria.

Methods (San Diego, Calif.) 120 (2017) 103-114

Authors:

M Stracy, AN Kapanidis

Abstract:

In vivo single-molecule and super-resolution techniques are transforming our ability to study transcription as it takes place in its native environment in living cells. This review will detail the methods for imaging single molecules in cells, and the data-analysis tools which can be used to extract quantitative information on the spatial organization, mobility, and kinetics of the transcription machinery from these experiments. Furthermore, we will highlight studies which have applied these techniques to shed new light on bacterial transcription.

Tracking Low-Copy Transcription Factors in Living Bacteria: The Case of the lac Repressor.

Biophysical journal 112:7 (2017) 1316-1327

Authors:

F Garza de Leon, L Sellars, M Stracy, SJW Busby, AN Kapanidis

Abstract:

Transcription factors control the expression of genes by binding to specific sites in DNA and repressing or activating transcription in response to stimuli. The lac repressor (LacI) is a well characterized transcription factor that regulates the ability of bacterial cells to uptake and metabolize lactose. Here, we study the intracellular mobility and spatial distribution of LacI in live bacteria using photoactivated localization microscopy combined with single-particle tracking. Since we track single LacI molecules in live cells by stochastically photoactivating and observing fluorescent proteins individually, there are no limitations on the copy number of the protein under study; as a result, we were able to study the behavior of LacI in bacterial strains containing the natural copy numbers (∼40 monomers), as well as in strains with much higher copy numbers due to LacI overexpression. Our results allowed us to determine the relative abundance of specific, near-specific, and non-specific DNA binding modes of LacI in vivo, showing that all these modes are operational inside living cells. Further, we examined the spatial distribution of LacI in live cells, confirming its specific binding to lac operator regions on the chromosome; we also showed that mobile LacI molecules explore the bacterial nucleoid in a way similar to exploration by other DNA-binding proteins. Our work also provides an example of applying tracking photoactivated localization microscopy to studies of low-copy-number proteins in living bacteria.

Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase.

Nature microbiology 2 (2017) 16249-16249

Authors:

LE Lamberte, G Baniulyte, SS Singh, AM Stringer, RP Bonocora, M Stracy, AN Kapanidis, JT Wade, DC Grainger

Abstract:

Horizontal gene transfer permits rapid dissemination of genetic elements between individuals in bacterial populations. Transmitted DNA sequences may encode favourable traits. However, if the acquired DNA has an atypical base composition, it can reduce host fitness. Consequently, bacteria have evolved strategies to minimize the harmful effects of foreign genes. Most notably, xenogeneic silencing proteins bind incoming DNA that has a higher AT content than the host genome. An enduring question has been why such sequences are deleterious. Here, we showed that the toxicity of AT-rich DNA in Escherichia coli frequently results from constitutive transcription initiation within the coding regions of genes. Left unchecked, this causes titration of RNA polymerase and a global downshift in host gene expression. Accordingly, a mutation in RNA polymerase that diminished the impact of AT-rich DNA on host fitness reduced transcription from constitutive, but not activator-dependent, promoters.

Kinetics of DNA uptake during transformation provide evidence for a translocation ratchet mechanism

Proceedings of the National Academy of Sciences of the United States of America Proceedings of the National Academy of Sciences 113:44 (2016) 12467-12472

Authors:

Christof Hepp, Berenike Maier

Single-molecule FRET reveals the pre-initiation and initiation conformations of influenza virus promoter RNA

Nucleic Acids Research Oxford University Press (2016)

Authors:

Nicole C Robb, Aartjan JW te Velthuis, R Wieneke, R Tampe, T Cordes, Ervin Fodor, Achillefs N Kapanidis

Abstract:

Influenza viruses have a segmented viral RNA (vRNA) genome, which is replicated by the viral RNA-dependent RNA polymerase (RNAP). Replication initiates on the vRNA 3' terminus, producing a complementary RNA (cRNA) intermediate, which serves as a template for the synthesis of new vRNA. RNAP structures show the 3' terminus of the vRNA template in a pre-initiation state, bound on the surface of the RNAP rather than in the active site; no information is available on 3' cRNA binding. Here, we have used single-molecule Förster resonance energy transfer (smFRET) to probe the viral RNA conformations that occur during RNAP binding and initial replication. We show that even in the absence of nucleotides, the RNAP-bound 3' termini of both vRNA and cRNA exist in two conformations, corresponding to the pre-initiation state and an initiation conformation in which the 3' terminus of the viral RNA is in the RNAP active site. Nucleotide addition stabilises the 3' vRNA in the active site and results in unwinding of the duplexed region of the promoter. Our data provides insights into the dynamic motions of RNA that occur during initial influenza replication and has implications for our understanding of the replication mechanisms of similar pathogenic viruses.