Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase

(2018)

Authors:

TD Craggs, M Sustarsic, A Plochowietz, M Mosayebi, H Kaju, A Cuthbert, J Hohlbein, L Domicevica, PHILIP Biggin, J Doye, A Kapanidis

Abstract:

DNA-binding proteins utilise different recognition mechanisms to locate their DNA targets. Some proteins recognise specific nucleotide sequences, while many DNA repair proteins interact with specific (often bent) DNA structures. While sequence-specific DNA binding mechanisms have been studied extensively, structure-specific mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I (Pol) substrates both alone and in Pol-DNA complexes. Using a rigid-body docking approach based on a network of 73 distance restraints collected using single-molecule FRET, we determined a novel solution structure of the singlenucleotide-gapped DNA-Pol binary complex. The structure was highly consistent with previous crystal structures with regards to the downstream primer-template DNA substrate; further, our structure showed a previously unobserved sharp bend (~120°) in the DNA substrate; we also showed that this pronounced bending of the substrate is present in living bacteria. All-atom molecular dynamics simulations and single-molecule quenching assays revealed that 4-5 nt of downstream gap-proximal DNA are unwound in the binary complex. Coarse-grained simulations on free gapped substrates reproduced our experimental FRET values with remarkable accuracy (<ΔFRET> = -0.0025 across 34 independent distances) and revealed that the one-nucleotide-gapped DNA frequently adopted highly bent conformations similar to those in the Pol-bound state (ΔG < 4 kT); such conformations were much less accessible to nicked (> 7 kT) or duplex (>> 10 kT) DNA. Our results suggest a mechanism by which Pol and other structure-specific DNA-binding proteins locate their DNA targets through sensing of the conformational dynamics of DNA substrates.

Single-molecule analysis of the influenza virus replication initiation mechanism

Biophysical Journal Biophysical Society 114:3 (2018) 246A-246A

Authors:

Nicole Robb, AJW te Velthuis, Ervin Fodor, Achillefs Kapanidis

A peptide-based synthetic transcription factor selectively activates transcription in a mammalian cell.

Chemical communications (Cambridge, England) 54:13 (2018) 1611-1614

Authors:

Koushik Roy, Abhishek Mazumder, Piya Ghosh, Gitashri Naiya, Basusree Ghosh, Siddhartha Roy

Abstract:

A peptide-based cell permeable synthetic transcription factor is reported, which binds to its target site with high affinity and specificity. When linked to a HAT-binding peptide, it causes significant upregulation of gene expression in a mammalian cell. Such molecules may be developed for selectively activating repressed genes in mammalian cells.

Short-Read Single-Molecule DNA Sequencing for Highly Parallel Analysis of Protein-DNA Interactions

Biophysical Journal Elsevier 114:3 (2018) 92a

Authors:

Rebecca Andrews, Horst Steuer, Arun Shivalingam, Afaf H El-Sagheer, Tom Brown, Achillefs N Kapanidis

Wide-Field Monitoring of Single Fluorescent Molecules and Nanoparticles without Immobilization

Biophysical Journal Elsevier 114:3 (2018) 169a

Authors:

Barak Gilboa, Bo Jing, Maabur Sow, Tao Ju Cui, Anne Plochowietz, Achillefs N Kapanidis