The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp

Nucleic Acids Research Oxford University Press 46:14 (2018) 7284-7295

Authors:

D Duchi, A Mazumder, AM Malinen, RH Ebright, Achillefs Kapanidis

Abstract:

RNA polymerase (RNAP) contains a mobile structural module, the ‘clamp,’ that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1–1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.

Tracking tRNA packages.

Nature chemical biology 14:6 (2018) 528-529

Authors:

Achillefs N Kapanidis, Mathew Stracy

Multiple RPAs make WRN syndrome protein a superhelicase.

Nucleic acids research 46:9 (2018) 4689-4698

Authors:

Mina Lee, Soochul Shin, Heesoo Uhm, Heesun Hong, Jaewon Kirk, Kwangbeom Hyun, Tomasz Kulikowicz, Jaehoon Kim, Byungchan Ahn, Vilhelm A Bohr, Sungchul Hohng

Abstract:

RPA is known to stimulate the helicase activity of Werner syndrome protein (WRN), but the exact stimulation mechanism is not understood. We use single-molecule FRET and magnetic tweezers to investigate the helicase activity of WRN and its stimulation by RPA. We show that WRN alone is a weak helicase which repetitively unwind just a few tens of base pairs, but that binding of multiple RPAs to the enzyme converts WRN into a superhelicase that unidirectionally unwinds double-stranded DNA more than 1 kb. Our study provides a good case in which the activity and biological functions of the enzyme may be fundamentally altered by the binding of cofactors.

Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3).

Molecular cell (2018)

Authors:

W Lin, K Das, D Degen, A Mazumder, D Duchi, D Wang, YW Ebright, RY Ebright, E Sineva, M Gigliotti, A Srivastava, S Mandal, Y Jiang, Y Liu, R Yin, Z Zhang, ET Eng, D Thomas, S Donadio, H Zhang, C Zhang, AN Kapanidis, RH Ebright

Abstract:

Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.

Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase

(2018)

Authors:

TD Craggs, M Sustarsic, A Plochowietz, M Mosayebi, H Kaju, A Cuthbert, J Hohlbein, L Domicevica, PHILIP Biggin, J Doye, A Kapanidis

Abstract:

DNA-binding proteins utilise different recognition mechanisms to locate their DNA targets. Some proteins recognise specific nucleotide sequences, while many DNA repair proteins interact with specific (often bent) DNA structures. While sequence-specific DNA binding mechanisms have been studied extensively, structure-specific mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I (Pol) substrates both alone and in Pol-DNA complexes. Using a rigid-body docking approach based on a network of 73 distance restraints collected using single-molecule FRET, we determined a novel solution structure of the singlenucleotide-gapped DNA-Pol binary complex. The structure was highly consistent with previous crystal structures with regards to the downstream primer-template DNA substrate; further, our structure showed a previously unobserved sharp bend (~120°) in the DNA substrate; we also showed that this pronounced bending of the substrate is present in living bacteria. All-atom molecular dynamics simulations and single-molecule quenching assays revealed that 4-5 nt of downstream gap-proximal DNA are unwound in the binary complex. Coarse-grained simulations on free gapped substrates reproduced our experimental FRET values with remarkable accuracy (<ΔFRET> = -0.0025 across 34 independent distances) and revealed that the one-nucleotide-gapped DNA frequently adopted highly bent conformations similar to those in the Pol-bound state (ΔG < 4 kT); such conformations were much less accessible to nicked (> 7 kT) or duplex (>> 10 kT) DNA. Our results suggest a mechanism by which Pol and other structure-specific DNA-binding proteins locate their DNA targets through sensing of the conformational dynamics of DNA substrates.