The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp.

Nucleic acids research 46:14 (2018) 7284-7295

Authors:

Diego Duchi, Abhishek Mazumder, Anssi M Malinen, Richard H Ebright, Achillefs N Kapanidis

Abstract:

RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.

Rediscovering Bacteria through Single-Molecule Imaging in Living Cells

Biophysical Journal Elsevier 115:2 (2018) 190-202

Authors:

Achillefs N Kapanidis, Alessia Lepore, Meriem El Karoui

The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp

Nucleic Acids Research Oxford University Press 46:14 (2018) 7284-7295

Authors:

D Duchi, A Mazumder, AM Malinen, RH Ebright, Achillefs Kapanidis

Abstract:

RNA polymerase (RNAP) contains a mobile structural module, the ‘clamp,’ that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1–1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.

Tracking tRNA packages.

Nature chemical biology 14:6 (2018) 528-529

Authors:

Achillefs N Kapanidis, Mathew Stracy

Multiple RPAs make WRN syndrome protein a superhelicase.

Nucleic acids research 46:9 (2018) 4689-4698

Authors:

Mina Lee, Soochul Shin, Heesoo Uhm, Heesun Hong, Jaewon Kirk, Kwangbeom Hyun, Tomasz Kulikowicz, Jaehoon Kim, Byungchan Ahn, Vilhelm A Bohr, Sungchul Hohng

Abstract:

RPA is known to stimulate the helicase activity of Werner syndrome protein (WRN), but the exact stimulation mechanism is not understood. We use single-molecule FRET and magnetic tweezers to investigate the helicase activity of WRN and its stimulation by RPA. We show that WRN alone is a weak helicase which repetitively unwind just a few tens of base pairs, but that binding of multiple RPAs to the enzyme converts WRN into a superhelicase that unidirectionally unwinds double-stranded DNA more than 1 kb. Our study provides a good case in which the activity and biological functions of the enzyme may be fundamentally altered by the binding of cofactors.