Inferring shallow surfaces on sub-neptune exoplanets with JWST

The Astrophysical Journal Letters IOP Publishing 922:2 (2021) L27

Authors:

Shang-Min Tsai, Hamish Innes, Tim Lichtenberg, Jake Taylor, Matej Malik, Katy Chubb, Raymond Pierrehumbert

Abstract:

Planets smaller than Neptune and larger than Earth make up the majority of the discovered exoplanets. Those with H2-rich atmospheres are prime targets for atmospheric characterization. The transition between the two main classes, super-Earths and sub-Neptunes, is not clearly understood as the rocky surface is likely not accessible to observations. Tracking several trace gases (specifically the loss of ammonia (NH3) and hydrogen cyanide (HCN)) has been proposed as a proxy for the presence of a shallow surface. In this work, we revisit the proposed mechanism of nitrogen conversion in detail and find its timescale on the order of a million years. NH3 exhibits dual paths converting to N2 or HCN, depending on the UV radiation of the star and the stage of the system. In addition, methanol (CH3OH) is identified as a robust and complementary proxy for a shallow surface. We follow the fiducial example of K2-18b with a 2D photochemical model on an equatorial plane. We find a fairly uniform composition distribution below 0.1 mbar controlled by the dayside, as a result of slow chemical evolution. NH3 and CH3OH are concluded to be the most unambiguous proxies to infer surfaces on sub-Neptunes in the era of the James Webb Space Telescope.

Hidden water in magma ocean exoplanets

Astrophysical Journal Letters American Astronomical Society 922 (2021) L4

Authors:

Caroline Dorn, Tim Lichtenberg

Abstract:

We demonstrate that the deep volatile storage capacity of magma oceans has significant implications for the bulk composition, interior, and climate state inferred from exoplanet mass and radius data. Experimental petrology provides the fundamental properties of the ability of water and melt to mix. So far, these data have been largely neglected for exoplanet mass–radius modeling. Here we present an advanced interior model for water-rich rocky exoplanets. The new model allows us to test the effects of rock melting and the redistribution of water between magma ocean and atmosphere on calculated planet radii. Models with and without rock melting and water partitioning lead to deviations in planet radius of up to 16% for a fixed bulk composition and planet mass. This is within the current accuracy limits for individual systems and statistically testable on a population level. Unrecognized mantle melting and volatile redistribution in retrievals may thus underestimate the inferred planetary bulk water content by up to 1 order of magnitude.

Pen portraits of presidents - Professor Raymond Hide, CBE, ScD, FRS

Weather Wiley 77:3 (2021) 103-107

Authors:

Chris K Folland, Peter L Read

Abstract:

We describe the life and scientific accomplishments of Professor Raymond Hide. He was a past President of the Royal Meteorological Society and a supreme example of a geophysicist much honoured in his lifetime. He covered a wide area of geophysics from geomagnetism, meteorology, geodesy, oceanography and related aspects of planetary physics. Raymond Hide was particularly known in meteorology as a founding father of geophysical fluid dynamics, especially for his experiments using a rotating cylindrical annulus to study atmospheric dynamics.

A multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheres

Planetary Science Journal American Astronomical Society 2:5 (2021) 207

Authors:

Rj Graham, Tim Lichtenberg, Ryan Boukrouche, Raymond Pierrehumbert

Abstract:

Central stages in the evolution of rocky, potentially habitable planets may play out under atmospheric conditions with a large inventory of nondilute condensable components. Variations in condensate retention and accompanying changes in local lapse rate may substantially affect planetary climate and surface conditions, but there is currently no general theory to effectively describe such atmospheres. In this article, expanding on the work by Li et al., we generalize the single-component moist pseudoadiabat derivation in Pierrehumbert to allow for multiple condensing components of arbitrary diluteness and retained condensate fraction. The introduction of a freely tunable retained condensate fraction allows for a flexible, self-consistent treatment of atmospheres with nondilute condensable components. To test the pseudoadiabat's capabilities for simulating a diverse range of climates, we apply the formula to planetary atmospheres with compositions, surface pressures, and temperatures representing important stages with condensable-rich atmospheres in the evolution of terrestrial planets: a magma ocean planet in a runaway greenhouse state; a post-impact, late-veneer-analog planet with a complex atmospheric composition; and an Archean Earth-like planet near the outer edge of the classical circumstellar habitable zone. We find that variations in the retention of multiple nondilute condensable species can significantly affect the lapse rate and in turn outgoing radiation and the spectral signatures of planetary atmospheres. The presented formulation allows for a more comprehensive treatment of the climate evolution of rocky exoplanets and early Earth analogs.

Beyond runaway: initiation of the post-runaway greenhouse state on rocky exoplanets

Astrophysical Journal IOP Publishing 919:2 (2021) 130

Authors:

Ryan Boukrouche, Tim Lichtenberg, Raymond Pierrehumbert

Abstract:

The runaway greenhouse represents the ultimate climate catastrophe for rocky, Earth-like worlds: when the incoming stellar flux cannot be balanced by radiation to space, the oceans evaporate and exacerbate heating, turning the planet into a hot wasteland with a steam atmosphere overlying a possibly molten magma surface. The equilibrium state beyond the runaway greenhouse instellation limit depends on the radiative properties of the atmosphere and its temperature structure. Here, we use 1D radiative-convective models of steam atmospheres to explore the transition from the tropospheric radiation limit to the post-runaway climate state. To facilitate eventual simulations with 3D global circulation models, a computationally efficient band-gray model is developed, which is capable of reproducing the key features of the more comprehensive calculations. We analyze two factors that determine the equilibrated surface temperature of post-runaway planets. The infrared cooling of the planet is strongly enhanced by the penetration of the dry adiabat into the optically thin upper regions of the atmosphere. In addition, thermal emission of both shortwave and near-IR fluxes from the hot lower atmospheric layers, which can radiate through window regions of the spectrum, is quantified. Astronomical surveys of rocky exoplanets in the runaway greenhouse state may discriminate these features using multiwavelength observations.