A multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheres

Planetary Science Journal American Astronomical Society 2:5 (2021) 207

Authors:

Rj Graham, Tim Lichtenberg, Ryan Boukrouche, Raymond Pierrehumbert

Abstract:

Central stages in the evolution of rocky, potentially habitable planets may play out under atmospheric conditions with a large inventory of nondilute condensable components. Variations in condensate retention and accompanying changes in local lapse rate may substantially affect planetary climate and surface conditions, but there is currently no general theory to effectively describe such atmospheres. In this article, expanding on the work by Li et al., we generalize the single-component moist pseudoadiabat derivation in Pierrehumbert to allow for multiple condensing components of arbitrary diluteness and retained condensate fraction. The introduction of a freely tunable retained condensate fraction allows for a flexible, self-consistent treatment of atmospheres with nondilute condensable components. To test the pseudoadiabat's capabilities for simulating a diverse range of climates, we apply the formula to planetary atmospheres with compositions, surface pressures, and temperatures representing important stages with condensable-rich atmospheres in the evolution of terrestrial planets: a magma ocean planet in a runaway greenhouse state; a post-impact, late-veneer-analog planet with a complex atmospheric composition; and an Archean Earth-like planet near the outer edge of the classical circumstellar habitable zone. We find that variations in the retention of multiple nondilute condensable species can significantly affect the lapse rate and in turn outgoing radiation and the spectral signatures of planetary atmospheres. The presented formulation allows for a more comprehensive treatment of the climate evolution of rocky exoplanets and early Earth analogs.

Beyond runaway: initiation of the post-runaway greenhouse state on rocky exoplanets

Astrophysical Journal IOP Publishing 919:2 (2021) 130

Authors:

Ryan Boukrouche, Tim Lichtenberg, Raymond Pierrehumbert

Abstract:

The runaway greenhouse represents the ultimate climate catastrophe for rocky, Earth-like worlds: when the incoming stellar flux cannot be balanced by radiation to space, the oceans evaporate and exacerbate heating, turning the planet into a hot wasteland with a steam atmosphere overlying a possibly molten magma surface. The equilibrium state beyond the runaway greenhouse instellation limit depends on the radiative properties of the atmosphere and its temperature structure. Here, we use 1D radiative-convective models of steam atmospheres to explore the transition from the tropospheric radiation limit to the post-runaway climate state. To facilitate eventual simulations with 3D global circulation models, a computationally efficient band-gray model is developed, which is capable of reproducing the key features of the more comprehensive calculations. We analyze two factors that determine the equilibrated surface temperature of post-runaway planets. The infrared cooling of the planet is strongly enhanced by the penetration of the dry adiabat into the optically thin upper regions of the atmosphere. In addition, thermal emission of both shortwave and near-IR fluxes from the hot lower atmospheric layers, which can radiate through window regions of the spectrum, is quantified. Astronomical surveys of rocky exoplanets in the runaway greenhouse state may discriminate these features using multiwavelength observations.

A multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheres

ArXiv 2108.12902 (2021)

Authors:

RJ Graham, Tim Lichtenberg, Ryan Boukrouche, Ray Pierrehumbert

Comments on Barker and Astoul (2021)

(2021)

Abstract:

The tidal evolution of interacting binaries when the orbital period is short compared to the primary star's convective time scale is a problem of long-standing. Terquem (2021) has argued that, when this temporal ordering scheme is obeyed, the rate of energy transfer from tides to convection (denoted $D_R$) is given by the product of the averaged Reynolds stress associated with the tidal velocity and the mean shear associated with the convective flow. In a recent response, Barker and Astoul (2021, hereafter BA21) claim to show that $D_R$ (in this form) cannot contribute to tidal dissipation. Their analysis is based on a study of Boussinesq and anelastic models. Here, we demonstrate that BA21 misidentify the correct term responsible for energy transfer between tides and convection. As a consequence, their anelastic calculations do not prove that the $D_R$ formulation is invalidated as an energy-loss coupling between tides and convection. BA21 also carry out a calculation in the Boussinesq approximation. Here, their claim that $D_R$ once again does not contribute is based on boundary conditions that do not apply to any star or planet that radiates energy from its surface, which is a key dissipational process in the problem we consider.

Redox hysteresis of super-Earth exoplanets from magma ocean circulation

Astrophysical Journal Letters American Astronomical Society 914:1 (2021) L4

Abstract:

Internal redox reactions may irreversibly alter the mantle composition and volatile inventory of terrestrial and super-Earth exoplanets and affect the prospects for atmospheric observations. The global efficacy of these mechanisms, however, hinges on the transfer of reduced iron from the molten silicate mantle to the metal core. Scaling analysis indicates that turbulent diffusion in the internal magma oceans of sub-Neptunes can kinetically entrain liquid iron droplets and quench core formation. This suggests that the chemical equilibration between core, mantle, and atmosphere may be energetically limited by convective overturn in the magma flow. Hence, molten super-Earths possibly retain a compositional memory of their accretion path. Redox control by magma ocean circulation is positively correlated with planetary heat flow, internal gravity, and planet size. The presence and speciation of remanent atmospheres, surface mineralogy, and core mass fraction of primary envelope-stripped exoplanets may thus constrain magma ocean dynamics.