Kinematics show consistency between stellar mass and supermassive black hole parent population jet speeds

(2025)

Authors:

Clara Lilje, Rob Fender, James H Matthews

The Four‐Pillar Intersectionality Framework: Reframing Sustainable Entrepreneurship as a Transdisciplinary Domain

Business Strategy and the Environment Wiley (2025)

Authors:

Giusy Sica, Chiara Spiniello, Alessandra Micozzi, Maria Palazzo

Abstract:

This study offers a comprehensive bibliometric and text‐mining overview of two decades of sustainability‐oriented entrepreneurship research. Drawing on 7563 peer‐reviewed articles from the Web of Science Core Collection, we map the field's evolution, thematic structure, and disciplinary convergence, identifying influential authors, networks, and journals. Using rule‐based classification and unsupervised learning, we categorize contributions within a four‐pillar framework encompassing environmental, social, economic, and cultural dimensions and examine their prevalence, overlap, and temporal trends. The results reveal a pronounced shift toward transdisciplinarity: 77% of articles engage with at least three pillars, and 34.5% address all four simultaneously. Building directly on this empirical evidence, we propose the Four‐Pillar Intersectionality Framework (F‐PIF), which reconceptualizes sustainable entrepreneurship as a transdisciplinary knowledge domain shaped by interdependent sustainability logics. The F‐PIF is therefore both derived from and supported by the bibliometric findings, providing an empirically grounded conceptual model that advances theoretical understanding and offers practical guidance for scholars and practitioners navigating entrepreneurship in the age of sustainability.

The GECKOS survey: The formation history of a barred galaxy via structural decomposition and spatially resolved spectroscopy

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

A Fraser-McKelvie, Da Gadotti, F Fragkoudi, C de Sá-Freitas, M Martig, M Bureau, T Davis, E Emsellem, R Elliott, D Fisher, M Hayden, J van de Sande, Ab Watts.

Abstract:

<jats:p>Disentangling the (co-)evolution of individual galaxy structural components remains a difficult task, owing to the inability to cleanly isolate light from spatially overlapping components. In this pilot study of PGC,044931, observed as part of the GECKOS survey, we utilised a VIRCAM H-band image to decompose the galaxy into five photometric components, three of which dominate by contributing more than $50%$ of light in specific regions, namely, a main disc, a boxy-peanut bulge, and a nuclear disc. When mapping the photometric decompositions onto MUSE observations, we found remarkably good separation in stellar kinematic space. All three structures occupy unique locations in the parameter space of the ratio of the light-weighted stellar line-of-sight mean velocity and velocity dispersion (rm V _⋆/σ_⋆) and the high-order stellar skew (h_3). These clear and distinct kinematic behaviours allowed us to make inferences about the formation histories of the individual components from observations of the mean stellar ages and metallicities of the three components. A clear story emerged: the main disc was built over a sustained and extended star formation phase, possibly partly fuelled by gas from a low-metallicity reservoir. Early on, that disc formed a bar that buckled and subsequently formed a nuclear disc in multiple and enriched star-formation episodes. This result is an example of how careful photometric decompositions combined with spatially well-resolved stellar kinematic information can help separate age-metallicity relations of different components and therefore disentangle the formation history of a galaxy. The results of this pilot study can be extended to a differential study of all GECKOS survey galaxies to assert the true diversity of Milky Way-like galaxies.</jats:p>

EP250207b is not a collapsar fast X-ray transient. Is it due to a compact object merger?

(2025)

Authors:

PG Jonker, AJ Levan, Xing Liu, Dong Xu, Yuan Liu, Xinpeng Xu, An Li, N Sarin, NR Tanvir, GP Lamb, ME Ravasio, J Sánchez-Sierras, JA Quirola-Vásquez, BC Rayson, JND van Dalen, DB Malesani, APC van Hoof, FE Bauer, J Chacón, SJ Smartt, A Martin-Carrillo, G Corcoran, L Cotter, A Rossi, F Onori, M Fraser, PT O'Brien, RAJ Eyles-Ferris, J Hjorth, T-W Chen, G Leloudas, L Tomasella, S Schulze, M De Pasquale, F Carotenuto, J Bright, Chenwei Wang, Shaolin Xiong, Jinpeng Zhang, Wangchen Xue, Jiacong Liu, Chengkui Li, D Mata Sanchez, MAP Torres

EP250207b is not a collapsar fast X-ray transient. Is it due to a binary compact object merger?

Monthly Notices of the Royal Astronomical Society Oxford University Press 545:2 (2025) staf2021

Authors:

PG Jonker, AJ Levan, Xing Liu, Dong Xu, Yuan Liu, Xinpeng Xu, An Li, N Sarin, NR Tanvir, GP Lamb, ME Ravasio, J Sánchez-Sierras, JA Quirola-Vásquez, BC Rayson, JND van Dalen, DB Malesani, APC van Hoof, FE Bauer, J Chacón, SJ Smartt, A Martin-Carrillo, G Corcoran, L Cotter, A Rossi, J Bright

Abstract:

Fast X-ray transients (FXTs) are short-lived extragalactic X-ray sources. Recent progress through multiwavelength follow-up of Einstein Probe-discovered FXTs has shown that several are related to collapsars, which can also produce -ray bursts (GRBs). In this paper, we investigate the nature of the FXT EP250207b. The Very Large Telescope/Multi Unit Spectroscopic Explorer spectra of a nearby (15.9 kpc in projection) lenticular galaxy reveal no signs of recent star formation. If this galaxy is indeed the host, EP250207b lies at a redshift , implying a peak observed absolute magnitude for the optical counterpart of . At the time when supernovae (SNe) would peak, it is substantially fainter than all SN types. These results are inconsistent with a collapsar origin for EP250207b. The properties favour a binary compact object merger-driven origin. The X-ray, optical, and radio observations are compared with predictions of several types of extragalactic transients, including afterglow and kilonova models. The data can be fitted with a slightly off-axis viewing angle afterglow. However, the late-time ( d) optical/near-infrared counterpart is too bright for the afterglow and also for conventional kilonova models. This could be remedied if that late emission is due to a globular cluster or the core of a (tidally disrupted) dwarf galaxy. If confirmed, this would be the first case where the multiwavelength properties of an FXT are found to be consistent with a compact object merger origin, increasing the parallels between FXTs and GRBs. We finally discuss whether the source could originate in a higher redshift host galaxy.