Tracing AGN-Galaxy Co-Evolution with UV Line-Selected Obscured AGN

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2076

Authors:

Luigi Barchiesi, L Marchetti, M Vaccari, C Vignali, F Pozzi, I Prandoni, R Gilli, M Mignoli, J Afonso, V Singh, CL Hale, I Heywood, MJ Jarvis, IH Whittam

Abstract:

Abstract Understanding black hole–galaxy co-evolution and the role of AGN feedback requires complete AGN samples, including heavily obscured systems. Such sources are key to constraining the black hole accretion rate density over cosmic time, yet they are challenging to identify and characterise across most wavelengths. In this work, we present the first UV line–selected ([Ne v]3426 and C iv1549) sample of obscured AGN with full X-ray-to-radio coverage, assembled by combining data from the Chandra COSMOS Legacy survey, the COSMOS2020 UV–NIR catalogue, mid- and far-IR photometry from XID+, and radio observations from the VLA and MIGHTEE surveys. Using CIGALE to perform spectral energy distribution (SED) fitting, we analyse 184 obscured AGN at 0.6 < z < 1.2 and 1.5 < z < 3.1, enabling detailed measurements of AGN and host galaxy properties, and direct comparison with Simba hydrodynamical simulations. We find that X-ray and radio data are essential for accurate SED fits, with the radio band proving critical when X-ray detections are missing or in cases of poor IR coverage. Comparisons with matched non-active galaxies and simulations suggest that the [Ne v]-selected sources are in a pre-quenching stage, while the C iv-selected ones are likely quenched by AGN activity. Our results indicate that [Ne v] and C iv selections target galaxies in a transient phase of their co-evolution, characterised by intense, obscured accretion, and pave the way for future extensions with upcoming large area high-z spectroscopic surveys.

A 15 Mpc rotating galaxy filament at redshift z = 0.032

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:4 (2025) 4306-4316

Authors:

Madalina N Tudorache, SL Jung, MJ Jarvis, I Heywood, AA Ponomareva, AA Vărăşteanu, N Maddox, T Yasin, M Glowacki

Abstract:

ABSTRACT Understanding the cold atomic hydrogen gas (H i) within cosmic filaments has the potential to pin down the relationship between the low density gas in the cosmic web and how the galaxies that lie within it grow using this material. We report the discovery of a cosmic filament using 14 H i-selected galaxies that form a very thin elongated structure of 1.7 Mpc. These galaxies are embedded within a much larger cosmic web filament, traced by optical galaxies, that spans at least $\sim 15$ Mpc. We find that the spin axes of the H i galaxies are significantly more strongly aligned with the cosmic web filament ($\langle \vert \cos \psi \vert \rangle = 0.64 \pm 0.05$) than cosmological simulations predict, with the optically selected galaxies showing alignment to a lesser degree ($\langle \vert \cos \psi \vert \rangle = 0.55 \pm 0.05$). This structure demonstrates that within the cosmic filament, the angular momentum of galaxies is closely connected to the large-scale filamentary structure. We also find strong evidence that the galaxies are orbiting around the spine of the filament, making this one of the largest rotating structures discovered thus far, and from which we can infer that there is transfer of angular momentum from the filament to the individual galaxies. The abundance of H i galaxies along the filament and the low dynamical temperature of the galaxies within the filament indicates that this filament is at an early evolutionary stage where the imprint of cosmic matter flow on galaxies has been preserved over cosmic time.

Kinematics show consistency between stellar mass and supermassive black hole parent population jet speeds

(2025)

Authors:

Clara Lilje, Rob Fender, James H Matthews

The Four‐Pillar Intersectionality Framework: Reframing Sustainable Entrepreneurship as a Transdisciplinary Domain

Business Strategy and the Environment Wiley (2025)

Authors:

Giusy Sica, Chiara Spiniello, Alessandra Micozzi, Maria Palazzo

Abstract:

This study offers a comprehensive bibliometric and text‐mining overview of two decades of sustainability‐oriented entrepreneurship research. Drawing on 7563 peer‐reviewed articles from the Web of Science Core Collection, we map the field's evolution, thematic structure, and disciplinary convergence, identifying influential authors, networks, and journals. Using rule‐based classification and unsupervised learning, we categorize contributions within a four‐pillar framework encompassing environmental, social, economic, and cultural dimensions and examine their prevalence, overlap, and temporal trends. The results reveal a pronounced shift toward transdisciplinarity: 77% of articles engage with at least three pillars, and 34.5% address all four simultaneously. Building directly on this empirical evidence, we propose the Four‐Pillar Intersectionality Framework (F‐PIF), which reconceptualizes sustainable entrepreneurship as a transdisciplinary knowledge domain shaped by interdependent sustainability logics. The F‐PIF is therefore both derived from and supported by the bibliometric findings, providing an empirically grounded conceptual model that advances theoretical understanding and offers practical guidance for scholars and practitioners navigating entrepreneurship in the age of sustainability.

The GECKOS survey: The formation history of a barred galaxy via structural decomposition and spatially resolved spectroscopy

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

A Fraser-McKelvie, Da Gadotti, F Fragkoudi, C de Sá-Freitas, M Martig, M Bureau, T Davis, E Emsellem, R Elliott, D Fisher, M Hayden, J van de Sande, Ab Watts.

Abstract:

<jats:p>Disentangling the (co-)evolution of individual galaxy structural components remains a difficult task, owing to the inability to cleanly isolate light from spatially overlapping components. In this pilot study of PGC,044931, observed as part of the GECKOS survey, we utilised a VIRCAM H-band image to decompose the galaxy into five photometric components, three of which dominate by contributing more than $50%$ of light in specific regions, namely, a main disc, a boxy-peanut bulge, and a nuclear disc. When mapping the photometric decompositions onto MUSE observations, we found remarkably good separation in stellar kinematic space. All three structures occupy unique locations in the parameter space of the ratio of the light-weighted stellar line-of-sight mean velocity and velocity dispersion (rm V _⋆/σ_⋆) and the high-order stellar skew (h_3). These clear and distinct kinematic behaviours allowed us to make inferences about the formation histories of the individual components from observations of the mean stellar ages and metallicities of the three components. A clear story emerged: the main disc was built over a sustained and extended star formation phase, possibly partly fuelled by gas from a low-metallicity reservoir. Early on, that disc formed a bar that buckled and subsequently formed a nuclear disc in multiple and enriched star-formation episodes. This result is an example of how careful photometric decompositions combined with spatially well-resolved stellar kinematic information can help separate age-metallicity relations of different components and therefore disentangle the formation history of a galaxy. The results of this pilot study can be extended to a differential study of all GECKOS survey galaxies to assert the true diversity of Milky Way-like galaxies.</jats:p>