Dynamic shocks powered by a wide, relativistic, super-Eddington outflow launched by an accreting neutron star in the mid-20th century

(2026)

Authors:

FJ Cowie, RP Fender, I Heywood, F Carotenuto, JH Matthews, B Reville, L Olivera-Nieto, AJ Cooper, AK Hughes, K Savard, PA Woudt, J van den Eijnden, N Grollimund, P Saikia

Evidence of mutually exclusive outflow forms from a black hole X-ray binary

(2026)

Authors:

Zuobin Zhang, Jiachen Jiang, Francesco Carotenuto, Honghui Liu, Cosimo Bambi, Rob P Fender, Andrew J Young, Jakob van den Eijnden, Christopher S Reynolds, Andrew C Fabian, Julien N Girard, Joey Neilsen, James F Steiner, John A Tomsick, Stà phane Corbel, Andrew K Hughes

A HyperFlash and ÉCLAT view of the local environment and energetics of the repeating FRB 20240619D

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag090

Authors:

OS Ould-Boukattine, AJ Cooper, JWT Hessels, DM Hewitt, SK Ocker, A Moroianu, K Nimmo, MP Snelders, I Cognard, TJ Dijkema, M Fine, MP Gawroński, W Herrmann, J Huang, F Kirsten, Z Pleunis, W Puchalska, S Ranguin, T Telkamp

Abstract:

Abstract Time-variable propagation effects provide a window into the local plasma environments of repeating fast radio burst (FRB) sources. Here we report high-cadence observations of FRB 20240619D, as part of the HyperFlash and ÉCLAT programs. We observed for 500 h and detected 217 bursts, including 10 bursts with high fluence (>25 Jy ms) and implied energy. We track burst-to-burst variations in dispersion measure (DM) and rotation measure (RM), from which we constrain the parallel magnetic field strength in the source’s local environment: 0.27 ± 0.13 mG. Apparent DM variations between sub-bursts in a single bright event are interpreted as coming from plasma lensing or variable emission height. We also identify two distinct scintillation screens along the line of sight, one associated with the Milky Way and the other likely located in the FRB’s host galaxy or local environment. Together, these (time-variable) propagation effects reveal that FRB 20240619D is embedded in a dense, turbulent and highly magnetised plasma. The source’s environment is more dynamic than that measured for many other (repeating) FRB sources, but less extreme compared to several repeaters that are associated with a compact, persistent radio source. FRB 20240619D’s cumulative burst fluence distribution shows a power-law break, with a flat tail at high energies. Along with previous studies, this emphasises a common feature in the burst energy distribution of hyperactive repeaters. Using the break in the burst fluence distribution, we estimate a source redshift of z = 0.042-0.240. We discuss FRB 20240619D’s nature in the context of similar studies of other repeating FRBs.

The odyssey of the black hole low mass X-ray binary GX339-4: Five years of dense multi-wavelength monitoring

(2026)

Authors:

E Tremou, S Corbel, R Fender, P Woudt, JCA Miller-Jones, I Heywood, F Carotenuto, S Motta, A Tzioumis, PJ Groot, DM Russell, J Crook-Mansour, P Saikia, W Yu, J van den Eijnden, AJ van der Horst, DRA Williams-Baldwin, X Zhang

Cosmic rays, gamma rays and neutrinos from discrete black hole X-ray binary ejecta

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag080

Authors:

Nicolas J Bacon, Alex J Cooper, Dimitrios Kantzas, James H Matthews, Rob Fender

Abstract:

Abstract The origin of cosmic rays from outside the Solar system are unknown, as they are deflected by the interstellar magnetic field. Supernova remnants are the main candidate for cosmic rays up to PeV energies but due to lack of evidence, they cannot be concluded as the sources of the most energetic Galactic CRs. We investigate discrete ejecta produced in state transitions of black hole X-ray binary systems as a potential source of cosmic rays, motivated by recent >100 TeV γ-ray detections by LHAASO. Starting from MAXI J1820+070, we examine the multi-wavelength observations and find that efficient particle acceleration may take place (i.e. into a robust power-law), up to ∼2 × 1016μ−1/2 eV, where μ is the ratio of particle energy to magnetic energy. From these calculations, we estimate the global contribution of ejecta to the entire Galactic spectrum to be $\sim 1~{{\ \rm per\ cent}}$, with the cosmic ray contribution rising to $\sim 5~{{\ \rm per\ cent}}$ at PeV energies, assuming roughly equal energy in non-thermal protons, non-thermal electrons and magnetic fields. In addition, we calculate associated γ-ray and neutrino spectra of the MAXI J1820+070 ejecta to investigate new detection methods with CTAO, which provide strong constraints on initial ejecta size of order 107 Schwarzschild radii (10−5 pc) assuming a period of adiabatic expansion.