Heavy-element production in a compact object merger observed by JWST.

Nature 626:8000 (2024) 737-741

Authors:

Andrew J Levan, Benjamin P Gompertz, Om Sharan Salafia, Mattia Bulla, Eric Burns, Kenta Hotokezaka, Luca Izzo, Gavin P Lamb, Daniele B Malesani, Samantha R Oates, Maria Edvige Ravasio, Alicia Rouco Escorial, Benjamin Schneider, Nikhil Sarin, Steve Schulze, Nial R Tanvir, Kendall Ackley, Gemma Anderson, Gabriel B Brammer, Lise Christensen, Vikram S Dhillon, Phil A Evans, Michael Fausnaugh, Wen-Fai Fong, Andrew S Fruchter, Chris Fryer, Johan PU Fynbo, Nicola Gaspari, Kasper E Heintz, Jens Hjorth, Jamie A Kennea, Mark R Kennedy, Tanmoy Laskar, Giorgos Leloudas, Ilya Mandel, Antonio Martin-Carrillo, Brian D Metzger, Matt Nicholl, Anya Nugent, Jesse T Palmerio, Giovanna Pugliese, Jillian Rastinejad, Lauren Rhodes, Andrea Rossi, Andrea Saccardi, Stephen J Smartt, Heloise F Stevance, Aaron Tohuvavohu, Alexander van der Horst, Susanna D Vergani, Darach Watson, Thomas Barclay, Kornpob Bhirombhakdi, Elmé Breedt, Alice A Breeveld, Alexander J Brown, Sergio Campana, Ashley A Chrimes, Paolo D'Avanzo, Valerio D'Elia, Massimiliano De Pasquale, Martin J Dyer, Duncan K Galloway, James A Garbutt, Matthew J Green, Dieter H Hartmann, Páll Jakobsson, Paul Kerry, Chryssa Kouveliotou, Danial Langeroodi, Emeric Le Floc'h, James K Leung, Stuart P Littlefair, James Munday, Paul O'Brien, Steven G Parsons, Ingrid Pelisoli, David I Sahman, Ruben Salvaterra, Boris Sbarufatti, Danny Steeghs, Gianpiero Tagliaferri, Christina C Thöne, Antonio de Ugarte Postigo, David Alexander Kann

Abstract:

The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GWs)2 and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (the r-process)3. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers4-6 and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs. 7-12). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic mass A = 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe.

The MASSIVE survey - XIX. Molecular gas measurements of the supermassive black hole masses in the elliptical galaxies NGC 1684 and NGC 0997

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2024) stae314-stae314

Authors:

Pandora Dominiak, Martin Bureau, Timothy A Davis, Chung-Pei Ma, Jenny E Greene, Meng Gu

Cosmology from LOFAR Two-metre Sky Survey data release 2: cross-correlation with the cosmic microwave background

Astronomy and Astrophysics EDP Sciences 681 (2024) A105

Authors:

Sj Nakoneczny, David Alonso, M Bilicki, Dj Schwarz, Cl Hale, A Pollo, C Heneka, P Tiwari, J Zheng, M Brüggen, Mj Jarvis, Tw Shimwell

Abstract:

Aims
We combined the LOw-Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) second data release (DR2) catalogue with gravitational lensing maps from the cosmic microwave background (CMB) to place constraints on the bias evolution of LoTSS-detected radio galaxies, and on the amplitude of matter perturbations.
Methods
We constructed a flux-limited catalogue from LoTSS DR2, and analysed its harmonic-space cross-correlation with CMB lensing maps from Planck, Cℓgk, as well as its auto-correlation, Cℓgg. We explored the models describing the redshift evolution of the large-scale radio galaxy bias, discriminating between them through the combination of both Cℓgk and Cℓgg. Fixing the bias evolution, we then used these data to place constraints on the amplitude of large-scale density fluctuations, parametrised by σ8.
Results
We report the significance of the Cℓgk signal at a level of 26.6σ. We determined that a linear bias evolution of the form bg(z) = bg,D/D(z), where D(z) is the growth rate, is able to provide a good description of the data, and we measured bg,D = 1.41 ± 0.06 for a sample that is flux limited at 1.5 mJy, for scales ℓ < 250 for Cℓgg, and ℓ < 500 for Cℓgk. At the sample’s median redshift, we obtained b(z = 0.82) = 2.34 ± 0.10. Using σ8 as a free parameter, while keeping other cosmological parameters fixed to the Planck values, we found fluctuations of σ8 = 0.75−0.04+0.05. The result is in agreement with weak lensing surveys, and at 1σ difference with Planck CMB constraints. We also attempted to detect the late-time-integrated Sachs-Wolfe effect with LOFAR data; however, with the current sky coverage, the cross-correlation with CMB temperature maps is consistent with zero. Our results are an important step towards constraining cosmology with radio continuum surveys from LOFAR and other future large radio surveys.

The VLBA CANDELS GOODS-North Survey – I. survey design, processing, data products, and source counts

Monthly Notices of the Royal Astronomical Society Oxford University Press 529:3 (2024) 2428-2442

Authors:

Roger P Deane, Jack F Radcliffe, Ann Njeri, Alexander Akoto-Danso, Gianni Bernardi, Oleg M Smirnov, Rob Beswick, Michael A Garrett, Matthew J Jarvis, Imogen H Whittam, Stephen Bourke, Zsolt Paragi

Abstract:

The past decade has seen significant advances in wide-field cm-wave very long baseline interferometry (VLBI), which is timely given the wide-area, synoptic survey-driven strategy of major facilities across the electromagnetic spectrum. While wide-field VLBI poses significant post-processing challenges that can severely curtail its potential scientific yield, many developments in the km-scale connected-element interferometer sphere are directly applicable to addressing these. Here we present the design, processing, data products, and source counts from a deep (11 μJy beam−1), quasi-uniform sensitivity, contiguous wide-field (160 arcmin2) 1.6 GHz VLBI survey of the CANDELS GOODS-North field. This is one of the best-studied extragalactic fields at milli-arcsecond resolution and, therefore, is well-suited as a comparative study for our Tera-pixel VLBI image. The derived VLBI source counts show consistency with those measured in the COSMOS field, which broadly traces the AGN population detected in arcsecond-scale radio surveys. However, there is a distinctive flattening in the S1.4GHz ∼100–500 μJy flux density range, which suggests a transition in the population of compact faint radio sources, qualitatively consistent with the excess source counts at 15 GHz that is argued to be an unmodelled population of radio cores. This survey approach will assist in deriving robust VLBI source counts and broadening the discovery space for future wide-field VLBI surveys, including VLBI with the Square Kilometre Array, which will include new large field-of-view antennas on the African continent at ≳1000 km baselines. In addition, it may be useful in the design of both monitoring and/or rapidly triggered VLBI transient programmes.

MIGHTEE polarization early science fields: the deep polarized sky

Monthly Notices of the Royal Astronomical Society Oxford University Press 528:2 (2024) 2511-2522

Authors:

Andrew R Taylor, Srikrishna Sekhar, Lennart Heino, Anna MM Scaife, Jeroen Stil, Micah Bowles, Matt Jarvis, Ian Heywood, Jordan D Collier

Abstract:

The MeerKAT International GigaHertz Tiered Extragalactic Exploration (MIGHTEE) is one of the MeerKAT large survey projects, designed to pathfind SKA key science. MIGHTEE is undertaking deep radio imaging of four well-observed fields (COSMOS, XMM-LSS, ELAIS S1, and CDFS) totaling 20 square degrees to μJy sensitivities. Broad-band imaging observations between 880 and1690 MHz yield total intensity continuum, spectro-polarimetry, and atomic hydrogen spectral imaging. Early science data from MIGHTEE are being released from initial observations of COSMOS and XMM–LSS. This paper describes the spectro-polarimetric observations, the polarization data processing of the MIGHTEE early science fields, and presents polarization data images and catalogues. The catalogues include radio spectral index, redshift information, and Faraday rotation measure synthesis results for 13 267 total intensity radio sources down to a polarized intensity detection limit of ∼20 μJy bm−1. Polarized signals were detected from 324 sources. For the polarized detections, we include a catalogue of Faraday Depth from both Faraday Synthesis and Q, U fitting, as well as total intensity and polarization spectral indices. The distribution of redshift of the total radio sources and detected polarized sources are the same, with median redshifts of 0.86 and 0.82, respectively. Depolarization of the emission at longer-wavelengths is seen to increase with decreasing total-intensity spectral index, implying that depolarization is intrinsic to the radio sources. No evidence is seen for a redshift dependence of the variance of Faraday depth.