LMC N132D: a mature supernova remnant with a power-law gamma-ray spectrum extending beyond 8 TeV

Astronomy and Astrophysics EDP Sciences 655 (2021) A7

Authors:

H Abdalla, F Aharonian, F Ait Benkhali, Eo Anguner, C Arcaro, C Armand, T Armstrong, H Ashkar, M Backes, V Baghmanyan, V Barbosa Martins, A Barnacka, M Barnard, R Batzofin, Y Becherini, D Berge, K Bernloehr, B Bi, M Boettcher, C Boisson, J Bolmont, M de Bony de Lavergne, M Breuhaus, R Brose, F Brun, T Bulik, T Bylund, F Cangemi, S Caroff, S Casanova, J Catalano, P Chambery, T Chand, A Chen, G Cotter, M Curylo, J Damascene Mbarubucyeye, Id Davids, J Davies, J Devin, A Djannati-Atai, A Dmytriiev, A Donath, V Doroshenko, L Dreyer, L Du Plessis, C Duffy, K Egberts, S Einecke

Abstract:

Context Supernova remnants (SNRs) are commonly thought to be the dominant sources of Galactic cosmic rays up to the knee of the cosmic-ray spectrum at a few PeV. Imaging Atmospheric Cherenkov Telescopes have revealed young SNRs as very-high-energy (VHE, >100 GeV) gamma-ray sources, but for only a few SNRs the hadronic cosmic-ray origin of their gamma-ray emission is indisputably established. In all these cases, the gamma-ray spectra exhibit a spectral cutoff at energies much below 100 TeV and thus do not reach the PeVatron regime.

Aims: The aim of this work was to achieve a firm detection for the oxygen-rich SNR LMC N132D in the VHE gamma-ray domain with an extended set of data, and to clarify the spectral characteristics and the localization of the gamma-ray emission from this exceptionally powerful gamma-ray-emitting SNR.

Methods: We analyzed 252 h of High Energy Stereoscopic System (H.E.S.S.) observations towards SNR N132D that were accumulated between December 2004 and March 2016 during a deep survey of the Large Magellanic Cloud, adding 104 h of observations to the previously published data set to ensure a > 5σ detection. To broaden the gamma-ray spectral coverage required for modeling the spectral energy distribution, an analysis of Fermi-LAT Pass 8 data was also included.

Results: We unambiguously detect N132D at VHE with a significance of 5.7σ. We report the results of a detailed analysis of its spectrum and localization based on the extended H.E.S.S. data set. The joint analysis of the extended H.E.S.S and Fermi-LAT data results in a spectral energy distribution in the energy range from 1.7 GeV to 14.8 TeV, which suggests a high luminosity of N132D at GeV and TeV energies. We set a lower limit on a gamma-ray cutoff energy of 8 TeV with a confidence level of 95%. The new gamma-ray spectrum as well as multiwavelength observations of N132D when compared to physical models suggests a hadronic origin of the VHE gamma-ray emission.

Conclusions: SNR N132D is a VHE gamma-ray source that shows a spectrum extending to the VHE domain without a spectral cutoff at a few TeV, unlike the younger oxygen-rich SNR Cassiopeia A. The gamma-ray emission is best explained by a dominant hadronic component formed by diffusive shock acceleration. The gamma-ray properties of N132D may be affected by an interaction with a nearby molecular cloud that partially lies inside the 95% confidence region of the source position.

A feasibility study of using X-ray Thomson Scattering to diagnose the in-flight plasma conditions of DT cryogenic implosions

(2021)

Authors:

H Poole, D Cao, R Epstein, I Golovkin, T Walton, SX Hu, M Kasim, SM Vinko, JR Rygg, VN Goncharov, G Gregori, SP Regan

Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources

Astrophysical Journal Letters American Astronomical Society 920:2 (2021) L45-L45

Authors:

R Abbasi, M Ackermann, J Adams, Ja Aguilar, M Ahlers, M Ahrens, C Alispach, Aa Alves, Nm Amin, R An, K Andeen, T Anderson, G Anton, C Argüelles, Y Ashida, S Axani, X Bai, Ab V., A Barbano, Sw Barwick, B Bastian, V Basu, S Baur, R Bay, Jj Beatty, Kh Becker, Jb Tjus, C Bellenghi, S Benzvi, D Berley, E Bernardini, Dz Besson, G Binder, D Bindig, E Blaufuss, S Blot, M Boddenberg, F Bontempo, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, S Browne, A Burgman, Rt Burley

Abstract:

A recent time-integrated analysis of a catalog of 110 candidate neutrino sources revealed a cumulative neutrino excess in the data collected by IceCube between 2008 April 6 and 2018 July 10. This excess, inconsistent with the background hypothesis in the Northern Hemisphere at the 3.3σ level, is associated with four sources: NGC 1068, TXS 0506+056, PKS 1424+240, and GB6 J1542+6129. This Letter presents two time-dependent neutrino emission searches on the same data sample and catalog: a point-source search that looks for the most significant time-dependent source of the catalog by combining space, energy, and time information of the events, and a population test based on binomial statistics that looks for a cumulative time-dependent neutrino excess from a subset of sources. Compared to previous time-dependent searches, these analyses enable a feature to possibly find multiple flares from a single direction with an unbinned maximum-likelihood method. M87 is found to be the most significant time-dependent source of this catalog at the level of 1.7σ post-trial, and TXS 0506+056 is the only source for which two flares are reconstructed. The binomial test reports a cumulative time-dependent neutrino excess in the Northern Hemisphere at the level of 3.0σ associated with four sources: M87, TXS 0506+056, GB6 J1542+6129, and NGC 1068.

Inefficient magnetic-field amplification in supersonic laser-plasma turbulence

Physical Review Letters American Physical Society 127 (2021) 175002

Authors:

Afa Bott, L Chen, G Boutoux, T Caillaud, A Duval, M Koenig, B Khiar, I Lantuéjoul, L Le-Deroff, B Reville, R Rosch, D Ryu, C Spindloe, B Vauzour, B Villette, Aa Schekochihin, Dq Lamb, P Tzeferacos, G Gregori, A Casner

Abstract:

We report a laser-plasma experiment that was carried out at the LMJ-PETAL facility and realized the first magnetized, turbulent, supersonic plasma with a large magnetic Reynolds number ($\mathrm{Rm} \approx 45$) in the laboratory. Initial seed magnetic fields were amplified, but only moderately so, and did not become dynamically significant. A notable absence of magnetic energy at scales smaller than the outer scale of the turbulent cascade was also observed. Our results support the notion that moderately supersonic, low-magnetic-Prandtl-number plasma turbulence is inefficient at amplifying magnetic fields.

Relativistic Landau quantization in non-uniform magnetic field and its applications to white dwarfs and quantum information

(2021)

Authors:

Srishty Aggarwal, Banibrata Mukhopadhyay, Gianluca Gregori