Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities.
Phys Rev Lett 100:16 (2008) 165002
Abstract:
The heating of solid targets irradiated by 5 x 10(20) W cm(-2), 0.8 ps, 1.05 microm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V. A surface layer is heated to approximately 5 keV with an axial temperature gradient of 0.6 microm scale length. Images of Ni Ly(alpha) show the hot region hasLaser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities
Physical Review Letters 100:16 (2008)
Abstract:
The heating of solid targets irradiated by 5×1020Wcm-2, 0.8 ps, 1.05μm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V. A surface layer is heated to ∼5keV with an axial temperature gradient of 0.6μm scale length. Images of Ni Lyα show the hot region has ≤25μm diameter. These data are consistent with collisional particle-in-cell simulations using preformed plasma density profiles from hydrodynamic modeling which show that the >100Gbar light pressure compresses the preformed plasma and drives a shock into the solid, heating a thin layer. © 2008 The American Physical Society.Probing warm dense lithium by inelastic X-ray scattering
Nature Physics 4:12 (2008) 940-944
Abstract:
One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars. Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure. © 2008 Macmillan Publishers Limited. All rights reserved.Compton scattering measurements from dense plasmas
5TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA2007) 112 (2008) ARTN 032071
Diagnosing direct-drive, shock-heated, and compressed plastic planar foils with noncollective spectrally resolved x-ray scattering
Physics of Plasmas 14:12 (2007)