Derivation of the static structure factor in strongly coupled non-equilibrium plasmas for X-ray scattering studies

High Energy Density Physics 3:1-2 (2007) 99-108

Authors:

G Gregori, A Ravasio, A Höll, SH Glenzer, SJ Rose

Abstract:

We present a fully analytical derivation of the static response function in strongly coupled and non-equilibrium plasmas. The model we are proposing is based on a linear response formalism coupled to a charged hard sphere reference for the ions. The electrons, instead, are treated using a local field correction which satisfies the compressibility sum rule at finite temperatures. The model is applied to calculate an effective ion mass that accounts for the self-energy correction of the free particle energy. We will discuss the implication of this approach in the interpretation of experimental results in X-ray scattering measurements from dense plasmas. © 2007 Elsevier B.V. All rights reserved.

Thomson scattering from near-solid density plasmas using soft X-ray free electron lasers

High Energy Density Physics 3:1-2 (2007) 120-130

Authors:

A Höll, T Bornath, L Cao, T Döppner, S Düsterer, E Förster, C Fortmann, SH Glenzer, G Gregori, T Laarmann, KH Meiwes-Broer, A Przystawik, P Radcliffe, R Redmer, H Reinholz, G Röpke, R Thiele, J Tiggesbäumker, S Toleikis, NX Truong, T Tschentscher, I Uschmann, U Zastrau

Abstract:

We discuss a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g., in ICF experiments or laboratory astrophysics. Plasma diagnosis of such plasmas is a longstanding issue which is addressed here using a pump-probe scattering experiment to reveal the collective electron plasma mode (plasmon) using the high-brilliance radiation to probe the plasma. Distinctive scattering features allow one to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature are determined from scattering off the plasmon mode. © 2007 Elsevier B.V. All rights reserved.

Temperature sensitivity of Cu Kα imaging efficiency using a spherical Bragg reflecting crystal

Physics of Plasmas 14:2 (2007)

Authors:

KU Akli, MH Key, HK Chung, SB Hansen, RR Freeman, MH Chen, G Gregori, S Hatchett, D Hey, N Izumi, J King, J Kuba, P Norreys, AJ MacKinnon, CD Murphy, R Snavely, RB Stephens, C Stoeckel, W Theobald, B Zhang

Abstract:

The interaction of a 75 J 10 ps, high intensity laser beam with low-mass, solid Cu targets is investigated. Two instruments were fielded as diagnostics of Cu K -shell emission from the targets: a single photon counting spectrometer provided the absolute Kα yield [C. Stoeckl, Rev. Sci. Instrum. 75, 3705 (2004)] and a spherically bent Bragg crystal recorded 2D monochromatic images with a spatial resolution of 10 μm [J. A. Koch, Rev. Sci. Instrum. 74, 2130 (2003)]. Due to the shifting and broadening of the Kα spectral lines with increasing temperature, there is a temperature dependence of the crystal collection efficiency. This affects measurements of the spatial pattern of electron transport, and it provides a temperature diagnostic when cross calibrated against the single photon counting spectrometer. The experimental data showing changing collection efficiency are presented. The results are discussed in light of modeling of the temperature-dependent spectrum of Cu K -shell emission. © 2007 American Institute of Physics.

Observations of Plasmons in Warm Dense Matter

Physical Review Letters 98 (2007) 065002 (4 pages)

Authors:

G Gregori, S. H. Glenzer, O.L. Landen, R. Redmer

Laboratory observation of secondary shock formation ahead of a strongly radiative blast wave

ASTROPHYS SPACE SCI 307:1-3 (2007) 219-225

Authors:

JF Hansen, MJ Edwards, DH Froula, AD Edens, G Gregori, T Ditmire

Abstract:

We have previously reported the experimental discovery of a second shock forming ahead of a radiative shock propagating in Xe. The initial shock is spherical, radiative, with a high Mach number, and it sends a supersonic radiative heat wave far ahead of itself. The heat wave rapidly slows to a transonic regime and when its Mach number drops to two with respect to the downstream plasma, the heat wave drives a second shock ahead of itself to satisfy mass and momentum conservation in the heat wave reference frame. We now show experimental data from a range of mixtures of Xe and N-2, gradually changing the properties of the initial shock and the environment into which the shock moves and radiates (the radiative conductivity and the heat capacity). We have successfully observed second shock formation over the entire range from 100% Xe mass fraction to 100% N-2. The formation radius of the second shock as a function of Xe mass fraction is consistent with an analytical estimate.