Meter-scale conditioned hydrodynamic optical-field-ionized plasma channels

Physical Review E American Physical Society 102:5 (2020) 53201

Authors:

A Picksley, A Alejo, Rj Shalloo, C Arran, A von Boetticher, L Corner, Ja Holloway, J Jonnerby, O Jakobsson, C Thornton, R Walczak, Sm Hooker

Abstract:

We demonstrate through experiments and numerical simulations that low-density, low-loss, meter-scale plasma channels can be generated by employing a conditioning laser pulse to ionize the neutral gas collar surrounding a hydrodynamic optical-field-ionized (HOFI) plasma channel. We use particle-in-cell simulations to show that the leading edge of the conditioning pulse ionizes the neutral gas collar to generate a deep, low-loss plasma channel which guides the bulk of the conditioning pulse itself as well as any subsequently injected pulses. In proof-of-principle experiments, we generate conditioned HOFI (CHOFI) waveguides with axial electron densities of ne0≈1×10^17cm−3 and a matched spot size of 26μm. The power attenuation length of these CHOFI channels was calculated to be Latt=(21±3)m, more than two orders of magnitude longer than achieved by HOFI channels. Hydrodynamic and particle-in-cell simulations demonstrate that meter-scale CHOFI waveguides with attenuation lengths exceeding 1 m could be generated with a total laser pulse energy of only 1.2 J per meter of channel. The properties of CHOFI channels are ideally suited to many applications in high-intensity light-matter interactions, including multi-GeV plasma accelerator stages operating at high pulse repetition rates.

Meter-Scale, Conditioned Hydrodynamic Optical-Field-Ionized Plasma Channels

(2020)

Authors:

A Picksley, A Alejo, RJ Shalloo, C Arran, A von Boetticher, L Corner, JA Holloway, J Jonnerby, O Jakobsson, C Thornton, R Walczak, SM Hooker

Guiding of high-intensity laser pulses in 100mm-long hydrodynamic optical-field-ionized plasma channels

Physical Review Accelerators and Beams American Physical Society 23:8 (2020) 081303

Authors:

A Picksley, A Alejo, J Cowley, N Bourgeois, L Corner, L Feder, J Holloway, H Jones, J Jonnerby, Hm Milchberg, Lr Reid, Aj Ross, R Walczak, Sm Hooker

Abstract:

Hydrodynamic optically-field-ionized (HOFI) plasma channels up to 100mm long are investigated. Optical guiding is demonstrated of laser pulses with a peak input intensity of $6\times10^{17}$ W cm$^{-2}$ through 100mm long plasma channels with on-axis densities measured interferometrically to be as low as $n_{e0} =(1.0\pm0.3)\times10^{17}$cm$^{-3}$. Guiding is also observed at lower axial densities, which are inferred from magneto-hydrodynamic simulations to be approximately $7\times10^{16}$cm$^{-3}$. Measurements of the power attenuation lengths of the channels are shown to be in good agreement with those calculated from the measured transverse electron density profiles. To our knowledge, the plasma channels investigated in this work are the longest, and have the lowest on-axis density, of any free-standing waveguide demonstrated to guide laser pulses with intensities above $>10^{17}$ W cm$^{-2}$.

Optical guiding in meter-scale plasma waveguides

Physical Review Letters American Physical Society 125:7 (2020) 74801

Authors:

B Miao, L Feder, Je Shrock, A Goffin, Hm Milchberg

Abstract:

We demonstrate a new highly tunable technique for generating meter-scale low density plasma waveguides. Such guides can enable laser-driven electron acceleration to tens of GeV in a single stage. Plasma waveguides are imprinted in hydrogen gas by optical field ionization induced by two time-separated Bessel beam pulses: The first pulse, a J 0 beam, generates the core of the waveguide, while the delayed second pulse, here a J 8 or J 16 beam, generates the waveguide cladding, enabling wide control of the guide’s density, depth, and mode confinement. We demonstrate guiding of intense laser pulses over hundreds of Rayleigh lengths with on-axis plasma densities as low as N e 0 ∼ 5 × 10 16     cm − 3 .

Numerical modelling of chromatic effects on axicon-focused beams used to generate HOFI plasma channels

Journal of Physics: Conference Series IOP Publishing 1596 (2020)

Authors:

Aimee Ross, Aaron Alejo, Alexander von Boetticher, James Cowley, James Holloway, Jakob Jonnerby, Alexander Picksley, Roman Walczak, Simon Hooker

Abstract:

Hydrodynamic optical-field-ionised (HOFI) plasma channels promise a route towards high repetition-rate, metre-scale stages for future laser plasma accelerators. These channels are formed by hydrodynamic expansion of a plasma column produced by optical field ionisation at the focus of a laser, typically from an axicon lens. Since the laser pulses used to generate the initial plasma column are of sub-picosecond duration, chromatic effects in the axicon lens could be important. In this paper we assess these effects using a numerical propagation code. The code is validated using analytical formulae and experimental data. For the parameter range investigated, dispersive effects are found to be of minor importance, reducing the peak on-axis intensity in the focal region by approximately 10%.