The AWAKE Run 2 programme and beyond

Symmetry MDPI 14:8 (2022) 1680

Authors:

Edda Gschwendtner, Konstantin Lotov, Patric Muggli, Vittorio Bencini, Philip Burrows, Collette Pakuza, Rebecca Ramjiawan

Abstract:

Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5–1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments.

Controlled growth of the self-modulation of a relativistic proton bunch in plasma

Physical Review Letters American Physical Society 129 (2022) 024802

Abstract:

A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the selfmodulation (SM) instability. We show that SM of a proton bunch can be seeded by the wakefields driven by a preceding electron bunch. SM timing reproducibility and control are at the level of a small fraction of the modulation period. With this seeding method, we independently control the amplitude of the seed wakefields with the charge of the electron bunch and the growth rate of SM with the charge of the proton bunch. Seeding leads to larger growth of the wakefields than in the instability case.

Recovery time of a plasma-wakefield accelerator

Nature Springer Nature 603:7899 (2022) 58-62

Authors:

R D’Arcy, James Chappell, J Beinortaite, S Diederichs, G Boyle, B Foster, Mj Garland, P Gonzalez Caminal, Ca Lindstrøm, G Loisch, S Schreiber, S Schröder, Rj Shalloo, M Thévenet, S Wesch, M Wing, J Osterhoff

Abstract:

The interaction of intense particle bunches with plasma can give rise to plasma wakes capable of sustaining gigavolt-per-metre electric fields, which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology. Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology. Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities.

European Strategy for Particle Physics -- Accelerator R&D Roadmap

(2022)

Authors:

C Adolphsen, D Angal-Kalinin, T Arndt, M Arnold, R Assmann, B Auchmann, K Aulenbacher, A Ballarino, B Baudouy, P Baudrenghien, M Benedikt, S Bentvelsen, A Blondel, A Bogacz, F Bossi, L Bottura, S Bousson, O Brüning, R Brinkmann, M Bruker, O Brunner, PN Burrows, G Burt, S Calatroni, K Cassou, A Castilla, N Catalan-Lasheras, E Cenni, A Chancé, N Colino, S Corde, L Corner, B Cros, A Cross, JP Delahaye, G Devanz, A-I Etienvre, P Evtushenko, A Faus-Golfe, P Fazilleau, M Ferrario, A Gallo, L García-Tabarés, C Geddes, F Gerigk, F Gianotti, S Gilardoni, A Grudiev, E Gschwendtner, G Hoffstaetter, M Hogan, S Hooker, A Hutton, R Ischebeck, K Jakobs, P Janot, E Jensen, J Kühn, W Kaabi, D Kayran, M Klein, J Knobloch, M Koratzinos, B Kuske, M Lamont, A Latina, P Lebrun, W Leemans, D Li, K Long, D Longuevergne, R Losito, W Lu, D Lucchesi, O Lundh, E Métral, F Marhauser, S Michizono, B Militsyn, J Mnich, E Montesinos, N Mounet, P Muggli, P Musumeci, S Nagaitsev, T Nakada, A Neumann, D Newbold, P Nghiem, M Noe, K Oide, J Osterhoff, M Palmer, N Pastrone, N Pietralla, S Prestemon, E Previtali, T Proslier, L Quettier, T Raubenheimer, B Rimmer, L Rivkin, E Rochepault, C Rogers, G Rosaz, T Roser, L Rossi, R Ruber, D Schulte, M Seidel, C Senatore, B Shepherd, J Shi, N Shipman, A Specka, S Stapnes, A Stocchi, D Stratakis, I Syratchev, O Tanaka, S Tantawi, C Tennant, E Tsesmelis, C Vaccarezza, A-M Valente, P Védrine, J Vieira, N Vinokurov, H Weise, M Wenskat, P Williams, M Wing, A Yamamoto, Y Yamamoto, K Yokoya, F Zimmermann

Demonstration of kilohertz operation of Hydrodynamic Optical-Field-Ionized Plasma Channels

Physical Review Accelerators and Beams American Physical Society (2022)

Authors:

A Alejo, J Cowley, A Picksley, R Walczak, SM Hooker

Abstract:

We demonstrate experimentally that hydrodynamic optical-field-ionized (HOFI) plasma channels can be generated at kHz-scale pulse repetition rates, in a static gas cell and for an extended period. Using a pump-probe arrangement, we show via transverse interferometry that the properties of two HOFI channels generated \SI{1}{ms} apart are essentially the same. We demonstrate that HOFI channels can be generated at a mean repetition rate of \SI{0.4}{kHz} for a period of 6.5 hours without degradation of the channel properties, and we determine the fluctuations in the key optical parameters of the channels in this period. Our results suggest that HOFI and conditioned HOFI channels are well suited for future high-repetition rate, multi-GeV plasma accelerator stages.