European Strategy for Particle Physics -- Accelerator R&D Roadmap

(2022)

Authors:

C Adolphsen, D Angal-Kalinin, T Arndt, M Arnold, R Assmann, B Auchmann, K Aulenbacher, A Ballarino, B Baudouy, P Baudrenghien, M Benedikt, S Bentvelsen, A Blondel, A Bogacz, F Bossi, L Bottura, S Bousson, O Brüning, R Brinkmann, M Bruker, O Brunner, PN Burrows, G Burt, S Calatroni, K Cassou, A Castilla, N Catalan-Lasheras, E Cenni, A Chancé, N Colino, S Corde, L Corner, B Cros, A Cross, JP Delahaye, G Devanz, A-I Etienvre, P Evtushenko, A Faus-Golfe, P Fazilleau, M Ferrario, A Gallo, L García-Tabarés, C Geddes, F Gerigk, F Gianotti, S Gilardoni, A Grudiev, E Gschwendtner, G Hoffstaetter, M Hogan, S Hooker, A Hutton, R Ischebeck, K Jakobs, P Janot, E Jensen, J Kühn, W Kaabi, D Kayran, M Klein, J Knobloch, M Koratzinos, B Kuske, M Lamont, A Latina, P Lebrun, W Leemans, D Li, K Long, D Longuevergne, R Losito, W Lu, D Lucchesi, O Lundh, E Métral, F Marhauser, S Michizono, B Militsyn, J Mnich, E Montesinos, N Mounet, P Muggli, P Musumeci, S Nagaitsev, T Nakada, A Neumann, D Newbold, P Nghiem, M Noe, K Oide, J Osterhoff, M Palmer, N Pastrone, N Pietralla, S Prestemon, E Previtali, T Proslier, L Quettier, T Raubenheimer, B Rimmer, L Rivkin, E Rochepault, C Rogers, G Rosaz, T Roser, L Rossi, R Ruber, D Schulte, M Seidel, C Senatore, B Shepherd, J Shi, N Shipman, A Specka, S Stapnes, A Stocchi, D Stratakis, I Syratchev, O Tanaka, S Tantawi, C Tennant, E Tsesmelis, C Vaccarezza, A-M Valente, P Védrine, J Vieira, N Vinokurov, H Weise, M Wenskat, P Williams, M Wing, A Yamamoto, Y Yamamoto, K Yokoya, F Zimmermann

Demonstration of kilohertz operation of Hydrodynamic Optical-Field-Ionized Plasma Channels

Physical Review Accelerators and Beams American Physical Society (2022)

Authors:

A Alejo, J Cowley, A Picksley, R Walczak, SM Hooker

Abstract:

We demonstrate experimentally that hydrodynamic optical-field-ionized (HOFI) plasma channels can be generated at kHz-scale pulse repetition rates, in a static gas cell and for an extended period. Using a pump-probe arrangement, we show via transverse interferometry that the properties of two HOFI channels generated \SI{1}{ms} apart are essentially the same. We demonstrate that HOFI channels can be generated at a mean repetition rate of \SI{0.4}{kHz} for a period of 6.5 hours without degradation of the channel properties, and we determine the fluctuations in the key optical parameters of the channels in this period. Our results suggest that HOFI and conditioned HOFI channels are well suited for future high-repetition rate, multi-GeV plasma accelerator stages.

Demonstration of kilohertz operation of hydrodynamic optical-field-ionized plasma channels

Physical Review Accelerators and Beams American Physical Society 25 (2022) 011301

Authors:

A Alejo, J Cowley, A Picksley, R Walczak, Sm Hooker

Abstract:

We demonstrate experimentally that hydrodynamic optical-field-ionized (HOFI) plasma channels can be generated at kHz-scale pulse repetition rates, in a static gas cell and for an extended period. Using a pump-probe arrangement, we show via transverse interferometry that the properties of two HOFI channels generated 1 ms apart are essentially the same. We demonstrate that HOFI channels can be generated at a mean repetition rate of 0.4 kHz for a period of 6.5 h without degradation of the channel properties, and we determine the fluctuations in the key optical parameters of the channels in this period. Our results suggest that HOFI and conditioned HOFI channels are well suited for future high-repetition rate, multi-GeV plasma accelerator stages.

Demonstration of kilohertz operation of Hydrodynamic Optical-Field-Ionized Plasma Channels

(2021)

Authors:

A Alejo, J Cowley, A Picksley, R Walczak, SM Hooker

GeV-scale accelerators driven by plasma-modulated pulses from kilohertz lasers

(2021)

Authors:

O Jakobsson, SM Hooker, R Walczak