Background modeling and simulation of the calibration source for the CRESST dark matter search experiment

Proceedings of Science 441 (2024)

Authors:

S Banik, G Angloher, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D'Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, S Fichtinger, D Fuchs, A Garai, VM Ghete, P Gorla, PV Guillaumon, S Gupta, D Hauff, M Ješkovský, J Jochum, M Kaznacheeva, A Kinast, H Kluck, H Kraus, S Kuckuk, A Langenkämper, M Mancuso, L Marini, B Mauri, L Meyer, V Mokina, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Pucci, F Reindl, J Rothe, K Schäffner, J Schieck, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, I Usherov, F Wagner, M Willers, V Zema

Abstract:

The Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) experiment employs scintillating crystals at extremely low temperatures (O(10 mK)) to search for nuclear recoils from hypothetical dark matter (DM) particles. CRESST has achieved thresholds below 100 eV with a wide range of target materials including CaWO4, LiAlO2, Al2O3, and Si. However, at these energies, the ability to discriminate between potential DM signals and electromagnetic background is insufficient. A detailed Geant4-based electromagnetic background model was developed for CRESST and is being continuously adapted to CRESST's current inventory of detector modules. We use a high-dimensional Bayesian likelihood fit of spectral templates to the measured spectrum to infer activities of various background sources. A template for the calibration source used to calculate the energy scale will be included in the likelihood fit. We present the status of CRESST's background model, and results from the simulation of the energy calibration. Our future plans of improving the background model are also discussed.

Geant4 simulations of the influence of contamination and roughness of the detector surface on background spectra in CRESST

Proceedings of Science 441 (2024)

Authors:

C Grüner, G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D'Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, S Fichtinger, D Fuchs, A Garai, VM Ghete, P Gorla, PV Guillaumon, S Gupta, D Hauff, M Ješkovský, J Jochum, M Kaznacheeva, A Kinast, H Kluck, H Kraus, S Kuckuk, A Langenkämper, M Mancuso, L Marini, B Mauri, L Meyer, V Mokina, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Pucci, F Reindl, J Rothe, K Schäffner, J Schieck, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, I Usherov, F Wagner, M Willers, V Zema

Abstract:

CRESST is an experiment for the direct detection of dark matter, capable of detecting nuclear recoils down to 10 eV, which results in an impressive sensitivity for sub-GeV dark matter particles. For a better understanding of the measured background a background model is developed. The background components are considered via Geant4 simulations. At the current state, the CRESST background model only considers bulk contaminations and treats all detector surfaces as perfect plains. This contribution presents potential effects of a surface contamination with radiogenic nuclides, in combination with the influence of the crystals surface roughness. Nuclide decays near the crystal surface may lead to partial energy deposition inside the detector, potentially causing MeV energy events to influence the background in the keV energy range. Since default Geant4 is not capable of simulating a rough surface, a new extension for simulating a rough surface is developed and the impact of different roughness configurations is studied.

New constraints on ultraheavy dark matter from the LZ experiment

(2024)

Authors:

J Aalbers, DS Akerib, AK Al Musalhi, CS Amarasinghe, A Ames, TJ Anderson, N Angelides, HM Araújo, JE Armstrong, M Arthurs, A Baker, S Balashov, J Bang, JW Bargemann, A Baxter, K Beattie, T Benson, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, E Bishop, GM Blockinger, B Boxer, CAJ Brew, P Brás, S Burdin, M Buuck, MC Carmona-Benitez, M Carter, A Chawla, H Chen, JJ Cherwinka, NI Chott, MV Converse, A Cottle, G Cox, D Curran, CE Dahl, A David, J Delgaudio, S Dey, L de Viveiros, C Ding, JEY Dobson, E Druszkiewicz, SR Eriksen, A Fan, NM Fearon, S Fiorucci, H Flaecher, ED Fraser, TMA Fruth, RJ Gaitskell, A Geffre, J Genovesi, C Ghag, R Gibbons, S Gokhale, J Green, MGD van der Grinten, CR Hall, S Han, E Hartigan-O'Connor, SJ Haselschwardt, SA Hertel, G Heuermann, GJ Homenides, M Horn, DQ Huang, D Hunt, CM Ignarra, E Jacquet, RS James, J Johnson, AC Kaboth, AC Kamaha, D Khaitan, A Khazov, I Khurana, J Kim, J Kingston, R Kirk, D Kodroff, L Korley, EV Korolkova, H Kraus, S Kravitz, L Kreczko, B Krikler, VA Kudryavtsev, J Lee, DS Leonard, KT Lesko, C Levy, J Lin, A Lindote, R Linehan, WH Lippincott, MI Lopes, E Lopez Asamar, W Lorenzon, C Lu, S Luitz, PA Majewski, A Manalaysay, RL Mannino, C Maupin, ME McCarthy, G McDowell, DN McKinsey, J McLaughlin, R McMonigle, EH Miller, E Mizrachi, A Monte, ME Monzani, JD Morales Mendoza, E Morrison, BJ Mount, M Murdy, A St J Murphy, A Naylor, C Nedlik, HN Nelson, F Neves, A Nguyen, JA Nikoleyczik, I Olcina, KC Oliver-Mallory, J Orpwood, KJ Palladino, J Palmer, NJ Pannifer, N Parveen, SJ Patton, B Penning, G Pereira, E Perry, T Pershing, A Piepke, Y Qie, J Reichenbacher, CA Rhyne, Q Riffard, GRC Rischbieter, HS Riyat, R Rosero, T Rushton, D Rynders, D Santone, ABMR Sazzad, RW Schnee, S Shaw, T Shutt, JJ Silk, C Silva, G Sinev, R Smith, VN Solovov, P Sorensen, J Soria, I Stancu, A Stevens, K Stifter, B Suerfu, TJ Sumner, M Szydagis, WC Taylor, DR Tiedt, M Timalsina, Z Tong, DR Tovey, J Tranter, M Trask, M Tripathi, DR Tronstad, W Turner, A Vacheret, AC Vaitkus, V Velan, A Wang, JJ Wang, Y Wang, JR Watson, RC Webb, L Weeldreyer, TJ Whitis, M Williams, WJ Wisniewski, FLH Wolfs, S Woodford, D Woodward, CJ Wright, Q Xia, X Xiang, J Xu, M Yeh, EA Zweig

Evaluation of Li 2 SnO 3 :Cr 3+ , Mn 4+ as a dual-emitter luminescence sensor for cryogenic temperatures

Journal of Materials Chemistry C Royal Society of Chemistry (RSC) 12:4 (2024) 1341-1353

Authors:

V Mykhaylyk, Y Zhydachevskyy, H Kraus, V Stasiv, G Leniec, V Hreb, L Vasylechko, V Sydorchuk, A Suchocki

Constraints on directionality effect of nuclear recoils in a liquid argon time projection chamber

The European Physical Journal C Springer Science and Business Media LLC 84:1 (2024) 24

Authors:

P Agnes, I Ahmad, S Albergo, IFM Albuquerque, T Alexander, AK Alton, P Amaudruz, M Atzori Corona, M Ave, I Ch Avetisov, O Azzolini, HO Back, Z Balmforth, A Barrado-Olmedo, P Barrillon, A Basco, G Batignani, V Bocci, WM Bonivento, B Bottino, MG Boulay, J Busto, M Cadeddu, A Caminata, N Canci, G Cappello, A Capra, S Caprioli, M Caravati, N Cargioli, M Carlini, P Castello, V Cataudella, P Cavalcante, S Cavuoti, S Cebrian, JM Cela Ruiz, S Chashin, A Chepurnov, E Chyhyrynets, L Cifarelli, D Cintas, M Citterio, B Cleveland, V Cocco, E Conde Vilda, L Consiglio, S Copello, G Covone, M Czubak, M D’Aniello, S D’Auria, MD Da Rocha Rolo, S Davini, A de Candia, S De Cecco, D De Gruttola, G De Filippis, D Dell’Aquila, S De Pasquale, G De Rosa, G Dellacasa, AV Derbin, A Devoto, F Di Capua, L Di Noto, C Dionisi, P Di Stefano, G Dolganov, F Dordei, A Elersich, E Ellingwood, T Erjavec, M Fernandez Diaz, G Fiorillo, P Franchini, D Franco, N Funicello, F Gabriele, D Gahan, C Galbiati, G Gallina, G Gallus, M Garbini, P Garcia Abia, A Gendotti, C Ghiano, C Giganti, GK Giovanetti, V Goicoechea Casanueva, A Gola, G Grauso, G Grilli di Cortona, A Grobov, M Gromov, M Guan, M Guerzoni, M Gulino, C Guo, BR Hackett, AL Hallin, A Hamer, M Haranczyk, T Hessel, S Hill, S Horikawa, F Hubaut, J Hucker, T Hugues, An Ianni, V Ippolito, C Jillings, S Jois, P Kachru, N Kemmerich, AA Kemp, CL Kendziora, M Kimura, I Kochanek, K Kondo, G Korga, S Koulosousas, A Kubankin, M Kuss, M Kuzniak, M La Commara, M Lai, E Le Guirriec, E Leason, A Leoni, X Li, L Lidey, M Lissia, L Luzzi, O Lychagina, O Macfadyen, IN Machulin, S Manecki, I Manthos, L Mapelli, A Margotti, SM Mari, C Mariani, J Maricic, A Marini, M Martínez, CJ Martoff, G Matteucci, K Mavrokoridis, AB McDonald, A Messina, R Milincic, A Mitra, A Moharana, J Monroe, E Moretti, M Morrocchi, T Mróz, VN Muratova, C Muscas, P Musico, R Nania, M Nessi, G Nieradka, K Nikolopoulos, J Nowak, K Olchansky, A Oleinik, V Oleynikov, P Organtini, A Ortiz de Solórzano, L Pagani, M Pallavicini, L Pandola, E Pantic, E Paoloni, G Paternoster, PA Pegoraro, K Pelczar, V Pesudo, S Piacentini, N Pino, A Pocar, DM Poehlmann, S Pordes, P Pralavorio, D Price, F Ragusa, Y Ramachers, M Razeti, AL Renshaw, M Rescigno, F Retiere, LP Rignanese, C Ripoli, A Rivetti, A Roberts, C Roberts, J Rode, G Rogers, L Romero, M Rossi, A Rubbia, MA Sabia, P Salomone, E Sandford, S Sanfilippo, D Santone, R Santorelli, C Savarese, E Scapparone, G Schillaci, FG Schuckman, G Scioli, M Simeone, P Skensved, MD Skorokhvatov, O Smirnov, T Smirnova, B Smith, A Sosa, F Spadoni, M Spangenberg, R Stefanizzi, A Steri, V Stornelli, S Stracka, M Stringer, S Sulis, A Sung, Y Suvorov, AM Szelc, R Tartaglia, A Taylor, J Taylor, S Tedesco, G Testera, K Thieme, TN Thorpe, A Tonazzo, A Tricomi, EV Unzhakov, T Vallivilayil John, M Van Uffelen, T Viant, S Viel, RB Vogelaar, J Vossebeld, M Wada, MB Walczak, H Wang, Y Wang, S Westerdale, L Williams, I Wingerter-Seez, R Wojaczynski, Ma M Wojcik, T Wright, Y Xie, C Yang, A Zabihi, P Zakhary, A Zani, A Zichichi, G Zuzel, MP Zykova

Abstract:

AbstractThe direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils produced in a target material from the WIMP elastic scattering. The experimental identification of the direction of the WIMP-induced nuclear recoils is a crucial asset in this field, as it enables unmistakable modulation signatures for dark matter. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity in argon dual-phase time projection chambers (TPC), that are widely considered for current and future direct dark matter searches. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud. Data were taken with nuclear recoils of known directions and kinetic energy of 72 keV, which is within the range of interest for WIMP-induced signals in argon. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratioRof the initial ionization cloud is$$R < 1.072$$R<1.072with 90 % confidence level.