Limits to electrical mobility in lead-halide perovskite semiconductors

Journal of Physical Chemistry Letters American Chemical Society 12:14 (2021) 3607-3617

Authors:

Chelsea Xia, Jiali Peng, Samuel Poncé, Jay Patel, Adam Wright, Timothy W Crothers, Mathias Rothmann, Anna Juliane Borchert, Rebecca L Milot, Hans Kraus, Qianqian Lin, Feliciano Giustino, Laura Herz, Michael Johnston

Abstract:

Semiconducting polycrystalline thin films are cheap to produce and can be deposited on flexible substrates, yet high-performance electronic devices usually utilize single-crystal semiconductors, owing to their superior charge-carrier mobilities and longer diffusion lengths. Here we show that the electrical performance of polycrystalline films of metal-halide perovskites (MHPs) approaches that of single crystals at room temperature. Combining temperature-dependent terahertz conductivity measurements and ab initio calculations we uncover a complete picture of the origins of charge-carrier scattering in single crystals and polycrystalline films of CH3NH3PbI3. We show that Fröhlich scattering of charge carriers with multiple phonon modes is the dominant mechanism limiting mobility, with grain-boundary scattering further reducing mobility in polycrystalline films. We reconcile the large discrepancy in charge-carrier diffusion lengths between single crystals and films by considering photon reabsorption. Thus, polycrystalline films of MHPs offer great promise for devices beyond solar cells, including light-emitting diodes and modulators.

Projected sensitivities of the LUX-ZEPLIN (LZ) experiment to new physics via low-energy electron recoils

ArXiv 2102.1174 (2021)

Authors:

The LZ Collaboration, DS Akerib, AK Al Musalhi, SK Alsum, CS Amarasinghe, A Ames, TJ Anderson, N Angelides, HM Araújo, JE Armstrong, M Arthurs, X Bai, J Balajthy, S Balashov, J Bang, JW Bargemann, D Bauer, A Baxter, P Beltrame, EP Bernard, A Bernstein, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, GM Blockinger, E Bodnia, B Boxer, CAJ Brew, P Brás, S Burdin, JK Busenitz, M Buuck, R Cabrita, MC Carmona-Benitez, M Cascella, C Chan, NI Chott, A Cole, MV Converse, A Cottle, G Cox, O Creaner, JE Cutter, CE Dahl, L de Viveiros, JEY Dobson, E Druszkiewicz, SR Eriksen, A Fan, S Fayer, NM Fearon, S Fiorucci, H Flaecher, ED Fraser, T Fruth, RJ Gaitskell, J Genovesi, C Ghag, E Gibson, S Gokhale, MGD van der Grinten, CB Gwilliam, CR Hall, CA Hardy, SJ Haselschwardt, SA Hertel, M Horn, DQ Huang, CM Ignarra, O Jahangir, RS James, W Ji, J Johnson, AC Kaboth, AC Kamaha, K Kamdin, K Kazkaz, D Khaitan, A Khazov, I Khurana, D Kodroff, L Korley, EV Korolkova, H Kraus, S Kravitz, L Kreczko, B Krikler, VA Kudryavtsev, EA Leason, J Lee, DS Leonard, KT Lesko, C Levy, J Li, J Liao, A Lindote, R Linehan, WH Lippincott, X Liu, MI Lopes, E Lopez Asamar, B López Paredes, W Lorenzon, S Luitz, PA Majewski, A Manalaysay, L Manenti, RL Mannino, N Marangou, ME McCarthy, DN McKinsey, J McLaughlin, EH Miller, E Mizrachi, A Monte, ME Monzani, JA Morad, JD Morales Mendoza, E Morrison, BJ Mount, A St J Murphy, D Naim, A Naylor, C Nedlik, HN Nelson, F Neves, JA Nikoleyczik, A Nilima, A Nguyen, I Olcina, KC Oliver-Mallory, S Pal, KJ Palladino, J Palmer, S Patton, N Parveen, EK Pease, B Penning, G Pereira, A Piepke, Y Qie, J Reichenbacher, CA Rhyne, A Richards, Q Riffard, GRC Rischbieter, R Rosero, P Rossiter, D Santone, ABMR Sazzad, RW Schnee, PR Scovell, S Shaw, TA Shutt, JJ Silk, C Silva, R Smith, M Solmaz, VN Solovov, P Sorensen, J Soria, I Stancu, A Stevens, K Stifter, B Suerfu, TJ Sumner, N Swanson, M Szydagis, WC Taylor, R Taylor, DJ Temples, PA Terman, DR Tiedt, M Timalsina, WH To, DR Tovey, M Tripathi, DR Tronstad, W Turner, U Utku, A Vaitkus, B Wang, JJ Wang, W Wang, JR Watson, RC Webb, RG White, TJ Whitis, M Williams, FLH Wolfs, D Woodward, CJ Wright, X Xiang, J Xu, M Yeh, P Zarzhitsky

Enhancing the sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment to low energy signals

arXiv preprint

Authors:

D.S. Akerib, A.K. Al Musalhi, S.K. Alsum, C.S. Amarasinghe, A. Ames, T.J. Anderson, N. Angelides, H.M. Araújo, J.E. Armstrong, M. Arthurs, X. Bai, J. Balajthy, S. Balashov, J. Bang, J.W. Bargemann, D. Bauer, A. Baxter, P. Beltrame, E.P. Bernard, A. Bernstein, A. Bhatti, A. Biekert, T.P. Biesiadzinski, H.J. Birch, G.M. Blockinger, B. Boxer, C.A.J. Brew, P. Brás, S. Burdin, J.K. Busenitz, M. Buuck, R. Cabrita, M.C. Carmona-Benitez, M. Cascella, C. Chan, N.I. Chott, A. Cole, M.V. Converse, A. Cottle, G. Cox, J.E. Cutter, C.E. Dahl, L. de Viveiros, J.E.Y. Dobson, E. Druszkiewicz, S.R. Eriksen, A. Fan, S. Fayer, N.M. Fearon, S. Fiorucci, H. Flaecher, E.D. Fraser, T. Fruth, R.J. Gaitskell, J. Genovesi, C. Ghag, E. Gibson, S. Gokhale, M.G.D. van der Grinten, C.B. Gwilliam, C.R. Hall, S.J. Haselschwardt, S.A. Hertel, M. Horn, D.Q. Huang, C.M. Ignarra, O. Jahangir, R.S. James, W. Ji, J. Johnson, A.C. Kaboth, A.C. Kamaha, K. Kamdin, K. Kazkaz, D. Khaitan, A. Khazov, I. Khurana, D. Kodroff, L. Korley, E.V. Korolkova, H. Kraus, S. Kravitz, L. Kreczko, B. Krikler, V.A. Kudryavtsev, E.A. Leason, K.T. Lesko, C. Levy, J. Li, J. Liao, J. Lin, A. Lindote, R. Linehan, W.H. Lippincott, X. Liu, M.I. Lopes, E. Lopez Asamar, B. López Paredes, W. Lorenzon, S. Luitz , P.A. Majewski, A. Manalaysay, L. Manenti, R.L. Mannino, N. Marangou, M.E. McCarthy, D.N. McKinsey, J. McLaughlin, E.H. Miller, E. Mizrachi, A. Monte, M.E. Monzani, J.A. Morad, J.D. Morales Mendoza, E. Morrison, B.J. Mount, A.St.J. Murphy, D. Naim, A. Naylor, C. Nedlik, H.N. Nelson, F. Neves, J.A. Nikoleyczik, I. Olcina, K.C. Oliver-Mallory, S. Pal, K.J. Palladino, J. Palmer, N. Parveen, E.K. Pease, B. Penning, G. Pereira, A. Piepke, Y. Qie, J. Reichenbacher, C.A. Rhyne, A. Richards, Q. Riffard, G.R.C. Rischbieter, R. Rosero, P. Rossiter, D. Santone, A.B.M.R. Sazzad, R.W. Schnee, P.R. Scovell, S. Shaw, T.A. Shutt, J.J. Silk, C. Silva, R. Smith, M. Solmaz, V.N. Solovov, P. Sorensen, I. Stancu, A. Stevens, K. Stifter, B. Suerfu, T.J. Sumner, N. Swanson, M. Szydagis, W.C. Taylor, R. Taylor, D.J. Temples, P.A. Terman, D.R. Tiedt, M. Timalsina, W.H. To, M. Tripathi, D.R. Tronstad, W. Turner, U. Utku, A. Vaitkus, B. Wang, J.J. Wang, W. Wang, J.R. Watson, R.C. Webb, R.G. White, T.J. Whitis, M. Williams, F.L.H. Wolfs, D. Woodward, C.J. Wright, X. Xiang, J. Xu, M. Yeh, P. Zarzhitsky

Abstract:

Two-phase xenon detectors, such as that at the core of the forthcoming LZ dark matter experiment, use photomultiplier tubes to sense the primary (S1) and secondary (S2) scintillation signals resulting from particle interactions in their liquid xenon target. This paper describes a simulation study exploring two techniques to lower the energy threshold of LZ to gain sensitivity to low-mass dark matter and astrophysical neutrinos, which will be applicable to other liquid xenon detectors. The energy threshold is determined by the number of detected S1 photons; typically, these must be recorded in three or more photomultiplier channels to avoid dark count coincidences that mimic real signals. To lower this threshold: a) we take advantage of the double photoelectron emission effect, whereby a single vacuum ultraviolet photon has a ∼20% probability of ejecting two photoelectrons from a photomultiplier tube photocathode; and b) we drop the requirement of an S1 signal altogether, and use only the ionization signal, which can be detected more efficiently. For both techniques we develop signal and background models for the nominal exposure, and explore accompanying systematic effects, including the dependence on the free electron lifetime in the liquid xenon. When incorporating double photoelectron signals, we predict a factor of ∼4 sensitivity improvement to the dark matter-nucleon scattering cross-section at 2.5 GeV/c2, and a factor of ∼1.6 increase in the solar 88B neutrino detection rate. Dropping the S1 requirement may allow sensitivity gains of two orders of magnitude in both cases. Finally, we apply these techniques to even lower masses by taking into account the atomic Migdal effect; this could lower the dark matter particle mass threshold to 80 MeV/c2.

Enhancing the sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment to low energy signals

ArXiv 2101.08753 (2021)

Authors:

DS Akerib, AK Al Musalhi, SK Alsum, CS Amarasinghe, A Ames, TJ Anderson, N Angelides, HM Araújo, JE Armstrong, M Arthurs, X Bai, J Balajthy, S Balashov, J Bang, JW Bargemann, D Bauer, A Baxter, P Beltrame, EP Bernard, A Bernstein, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, GM Blockinger, B Boxer, CAJ Brew, P Brás, S Burdin, JK Busenitz, M Buuck, R Cabrita, MC Carmona-Benitez, M Cascella, C Chan, NI Chott, A Cole, MV Converse, A Cottle, G Cox, JE Cutter, CE Dahl, L de Viveiros, JEY Dobson, E Druszkiewicz, SR Eriksen, A Fan, S Fayer, NM Fearon, S Fiorucci, H Flaecher, ED Fraser, T Fruth, RJ Gaitskell, J Genovesi, C Ghag, E Gibson, S Gokhale, MGD van der Grinten, CB Gwilliam, CR Hall, SJ Haselschwardt, SA Hertel, M Horn, DQ Huang, CM Ignarra, O Jahangir, RS James, W Ji, J Johnson, AC Kaboth, AC Kamaha, K Kamdin, K Kazkaz, D Khaitan, A Khazov, I Khurana, D Kodroff, L Korley, EV Korolkova, H Kraus, S Kravitz, L Kreczko, B Krikler, VA Kudryavtsev, EA Leason, KT Lesko, C Levy, J Li, J Liao, J Lin, A Lindote, R Linehan, WH Lippincott, X Liu, MI Lopes, E Lopez Asamar, B López Paredes, W Lorenzon, S Luitz, PA Majewski, A Manalaysay, L Manenti, RL Mannino, N Marangou, ME McCarthy, DN McKinsey, J McLaughlin, EH Miller, E Mizrachi, A Monte, ME Monzani, JA Morad, JD Morales Mendoza, E Morrison, BJ Mount, A St J Murphy, D Naim, A Naylor, C Nedlik, HN Nelson, F Neves, JA Nikoleyczik, I Olcina, KC Oliver-Mallory, S Pal, KJ Palladino, J Palmer, N Parveen, EK Pease, B Penning, G Pereira, A Piepke, Y Qie, J Reichenbacher, CA Rhyne, A Richards, Q Riffard, GRC Rischbieter, R Rosero, P Rossiter, D Santone, ABMR Sazzad, RW Schnee, PR Scovell, S Shaw, TA Shutt, JJ Silk, C Silva, R Smith, M Solmaz, VN Solovov, P Sorensen, I Stancu, A Stevens, K Stifter, B Suerfu, TJ Sumner, N Swanson, M Szydagis, WC Taylor, R Taylor, DJ Temples, PA Terman, DR Tiedt, M Timalsina, WH To, M Tripathi, DR Tronstad, W Turner, U Utku, A Vaitkus, B Wang, JJ Wang, W Wang, JR Watson, RC Webb, RG White, TJ Whitis, M Williams, FLH Wolfs, D Woodward, CJ Wright, X Xiang, J Xu, M Yeh, P Zarzhitsky

Discrimination of electronic recoils from nuclear recoils in two-phase xenon time projection chambers

Physical Review D American Physical Society (APS) 102:11 (2020) 112002

Authors:

DS Akerib, S Alsum, HM Araújo, X Bai, J Balajthy, A Baxter, EP Bernard, A Bernstein, TP Biesiadzinski, EM Boulton, B Boxer, P Brás, S Burdin, D Byram, MC Carmona-Benitez, C Chan, JE Cutter, L de Viveiros, E Druszkiewicz, A Fan, S Fiorucci, RJ Gaitskell, C Ghag, MGD Gilchriese, C Gwilliam, CR Hall, SJ Haselschwardt, SA Hertel, DP Hogan, M Horn, DQ Huang, CM Ignarra, RG Jacobsen, O Jahangir, W Ji, K Kamdin, K Kazkaz, D Khaitan, EV Korolkova, S Kravitz, VA Kudryavtsev, E Leason, BG Lenardo, KT Lesko, J Liao, J Lin, A Lindote, MI Lopes, A Manalaysay, RL Mannino, N Marangou, DN McKinsey, D-M Mei, M Moongweluwan, JA Morad, A St. J. Murphy, A Naylor, C Nehrkorn, HN Nelson, F Neves, A Nilima, KC Oliver-Mallory, KJ Palladino, EK Pease, Q Riffard, GRC Rischbieter, C Rhyne, P Rossiter, S Shaw, TA Shutt, C Silva, M Solmaz, VN Solovov, P Sorensen, TJ Sumner, M Szydagis, DJ Taylor, R Taylor, WC Taylor, BP Tennyson, PA Terman, DR Tiedt, WH To, L Tvrznikova, U Utku, S Uvarov, A Vacheret, V Velan, RC Webb, JT White, TJ Whitis, MS Witherell, FLH Wolfs, D Woodward, J Xu, C Zhang