Results on sub-GeV dark matter from a 10 eV threshold CRESST-III silicon detector

Physical Review D American Physical Society (APS) 107:12 (2023) 122003

Authors:

G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D’Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, N Ferreiro Iachellini, S Fichtinger, D Fuchs, A Fuss, A Garai, VM Ghete, S Gerster, P Gorla, PV Guillaumon, S Gupta, D Hauff, M Ješkovský, J Jochum, M Kaznacheeva, A Kinast, H Kluck, H Kraus, A Langenkämper, M Mancuso, L Marini, L Meyer, V Mokina, A Nilima, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Pucci, F Reindl, J Rothe, K Schäffner, J Schieck, D Schmiedmayer, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, I Usherov, F Wagner, M Willers, V Zema

Synthesis, Crystal Structure and Photoluminescent Properties of Red-Emitting CaAl4O7:Cr3+ Nanocrystalline Phosphor

Inorganics MDPI 11:5 (2023) 205

Authors:

Leonid Vasylechko, Vitalii Stadnik, Vasyl Hreb, Yaroslav Zhydachevskyy, Andriy Luchechko, Vitaliy Mykhaylyk, Hans Kraus, Andrzej Suchocki

Exciton formation dynamics and band-like free charge-carrier transport in 2D metal halide perovskite semiconductors

Advanced Functional Materials Wiley 33:32 (2023) 2300363

Authors:

Silvia G Motti, Manuel Kober-Czerny, Marcello Righetto, Philippe Holzhey, Joel Smith, Hans Kraus, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

Metal halide perovskite (MHP) semiconductors have driven a revolution in optoelectronic technologies over the last decade, in particular for high-efficiency photovoltaic applications. Low-dimensional MHPs presenting electronic confinement have promising additional prospects in light emission and quantum technologies. However, the optimisation of such applications requires a comprehensive understanding of the nature of charge carriers and their transport mechanisms. This study employs a combination of ultrafast optical and terahertz spectroscopy to investigate phonon energies, charge-carrier mobilities, and exciton formation in 2D (PEA)2PbI4 and (BA)2PbI4 (where PEA is phenylethylammonium and BA is butylammonium). Temperature-dependent measurements of free charge-carrier mobilities reveal band transport in these strongly confined semiconductors, with surprisingly high in-plane mobilities. Enhanced charge-phonon coupling is shown to reduce charge-carrier mobilities in (BA)2PbI4 with respect to (PEA)2PbI4. Exciton and free charge-carrier dynamics are disentangled by simultaneous monitoring of transient absorption and THz photoconductivity. A sustained free charge-carrier population is observed, surpassing the Saha equation predictions even at low temperature. These findings provide new insights into the temperature-dependent interplay of exciton and free-carrier populations in 2D MHPs. Furthermore, such sustained free charge-carrier population and high mobilities demonstrate the potential of these semiconductors for applications such as solar cells, transistors, and electrically driven light sources.

Secular equilibrium assessment in a CaWO4 target crystal from the dark matter experiment CRESST using Bayesian likelihood normalisation.

Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine 194 (2023) 110670

Authors:

G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D'Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, N Ferreiro Iachellini, S Fichtinger, D Fuchs, A Fuss, A Garai, VM Ghete, P Gorla, S Gupta, D Hauff, M Ješkovský, J Jochum, M Kaznacheeva, A Kinast, H Kluck, H Kraus, A Langenkämper, M Mancuso, L Marini, V Mokina, A Nilima, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Pucci, F Reindl, J Rothe, K Schäffner, J Schieck, D Schmiedmayer, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, I Usherov, F Wagner, M Willers, V Zema, CRESST Collaboration, F Ferella, M Laubenstein, S Nisi

Abstract:

CRESST is a leading direct detection sub-GeVc-2 dark matter experiment. During its second phase, cryogenic bolometers were used to detect nuclear recoils off the CaWO4 target crystal nuclei. The previously established electromagnetic background model relies on Secular Equilibrium (SE) assumptions. In this work, a validation of SE is attempted by comparing two likelihood-based normalisation results using a recently developed spectral template normalisation method based on Bayesian likelihood. Albeit we find deviations from SE in some cases we conclude that these deviations are artefacts of the fit and that the assumptions of SE is physically meaningful.

Towards an automated data cleaning with deep learning in CRESST.

European physical journal plus 138:1 (2023) 100

Authors:

G Angloher, S Banik, D Bartolot, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D'Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, N Ferreiro Iachellini, S Fichtinger, D Fuchs, A Fuss, A Garai, VM Ghete, S Gerster, P Gorla, PV Guillaumon, S Gupta, D Hauff, M Ješkovský, J Jochum, M Kaznacheeva, A Kinast, H Kluck, H Kraus, M Lackner, A Langenkämper, M Mancuso, L Marini, L Meyer, V Mokina, A Nilima, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Pucci, F Reindl, D Rizvanovic, J Rothe, K Schäffner, J Schieck, D Schmiedmayer, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, I Usherov, F Wagner, M Willers, V Zema, W Waltenberger, CRESST Collaboration

Abstract:

The CRESST experiment employs cryogenic calorimeters for the sensitive measurement of nuclear recoils induced by dark matter particles. The recorded signals need to undergo a careful cleaning process to avoid wrongly reconstructed recoil energies caused by pile-up and read-out artefacts. We frame this process as a time series classification task and propose to automate it with neural networks. With a data set of over one million labeled records from 68 detectors, recorded between 2013 and 2019 by CRESST, we test the capability of four commonly used neural network architectures to learn the data cleaning task. Our best performing model achieves a balanced accuracy of 0.932 on our test set. We show on an exemplary detector that about half of the wrongly predicted events are in fact wrongly labeled events, and a large share of the remaining ones have a context-dependent ground truth. We furthermore evaluate the recall and selectivity of our classifiers with simulated data. The results confirm that the trained classifiers are well suited for the data cleaning task.