First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

(2022)

Authors:

J Aalbers, DS Akerib, CW Akerlof, AK Al Musalhi, F Alder, A Alqahtani, SK Alsum, CS Amarasinghe, A Ames, TJ Anderson, N Angelides, HM Araújo, JE Armstrong, M Arthurs, S Azadi, AJ Bailey, A Baker, J Balajthy, S Balashov, J Bang, JW Bargemann, MJ Barry, J Barthel, D Bauer, A Baxter, K Beattie, J Belle, P Beltrame, J Bensinger, T Benson, EP Bernard, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, B Birrittella, GM Blockinger, KE Boast, B Boxer, R Bramante, CAJ Brew, P Brás, JH Buckley, VV Bugaev, S Burdin, JK Busenitz, M Buuck, R Cabrita, C Carels, DL Carlsmith, B Carlson, MC Carmona-Benitez, M Cascella, C Chan, A Chawla, H Chen, JJ Cherwinka, NI Chott, A Cole, J Coleman, MV Converse, A Cottle, G Cox, WW Craddock, O Creaner, D Curran, A Currie, JE Cutter, CE Dahl, A David, J Davis, TJR Davison, J Delgaudio, S Dey, L de Viveiros, A Dobi, JEY Dobson, E Druszkiewicz, A Dushkin, TK Edberg, WR Edwards, MM Elnimr, WT Emmet, SR Eriksen, CH Faham, A Fan, S Fayer, NM Fearon, S Fiorucci, H Flaecher, P Ford, VB Francis, ED Fraser, T Fruth, RJ Gaitskell, NJ Gantos, D Garcia, A Geffre, VM Gehman, J Genovesi, C Ghag, R Gibbons, E Gibson, MGD Gilchriese, S Gokhale, B Gomber, J Green, A Greenall, S Greenwood, MGD van der Grinten, CB Gwilliam, CR Hall, S Hans, K Hanzel, A Harrison, E Hartigan-O'Connor, SJ Haselschwardt, SA Hertel, G Heuermann, C Hjemfelt, MD Hoff, E Holtom, JY-K Hor, M Horn, DQ Huang, D Hunt, CM Ignarra, RG Jacobsen, O Jahangir, RS James, SN Jeffery, W Ji, J Johnson, AC Kaboth, AC Kamaha, K Kamdin, V Kasey, K Kazkaz, J Keefner, D Khaitan, M Khaleeq, A Khazov, I Khurana, YD Kim, CD Kocher, D Kodroff, L Korley, EV Korolkova, J Kras, H Kraus, S Kravitz, HJ Krebs, L Kreczko, B Krikler, VA Kudryavtsev, S Kyre, B Landerud, EA Leason, C Lee, J Lee, DS Leonard, R Leonard, KT Lesko, C Levy, J Li, F-T Liao, J Liao, J Lin, A Lindote, R Linehan, WH Lippincott, R Liu, X Liu, Y Liu, C Loniewski, MI Lopes, E Lopez Asamar, B López Paredes, W Lorenzon, D Lucero, S Luitz, JM Lyle, PA Majewski, J Makkinje, DC Malling, A Manalaysay, L Manenti, RL Mannino, N Marangou, MF Marzioni, C Maupin, ME McCarthy, CT McConnell, DN McKinsey, J McLaughlin, Y Meng, J Migneault, EH Miller, E Mizrachi, JA Mock, A Monte, ME Monzani, JA Morad, JD Morales Mendoza, E Morrison, BJ Mount, M Murdy, A St J Murphy, D Naim, A Naylor, C Nedlik, C Nehrkorn, F Neves, A Nguyen, JA Nikoleyczik, A Nilima, J O'Dell, FG O'Neill, K O'Sullivan, I Olcina, MA Olevitch, KC Oliver-Mallory, J Orpwood, D Pagenkopf, S Pal, KJ Palladino, J Palmer, M Pangilinan, N Parveen, SJ Patton, EK Pease, B Penning, C Pereira, G Pereira, E Perry, T Pershing, IB Peterson, A Piepke, J Podczerwinski, D Porzio, S Powell, RM Preece, K Pushkin, Y Qie, BN Ratcliff, J Reichenbacher, L Reichhart, CA Rhyne, A Richards, Q Riffard, GRC Rischbieter, JP Rodrigues, A Rodriguez, HJ Rose, R Rosero, P Rossiter, T Rushton, G Rutherford, D Rynders, JS Saba, D Santone, ABMR Sazzad, RW Schnee, PR Scovell, D Seymour, S Shaw, T Shutt, JJ Silk, C Silva, G Sinev, K Skarpaas, W Skulski, R Smith, M Solmaz, VN Solovov, P Sorensen, J Soria, I Stancu, MR Stark, A Stevens, TM Stiegler, K Stifter, R Studley, B Suerfu, TJ Sumner, P Sutcliffe, N Swanson, M Szydagis, M Tan, DJ Taylor, R Taylor, WC Taylor, DJ Temples, BP Tennyson, PA Terman, KJ Thomas, DR Tiedt, M Timalsina, WH To, A Tomás, Z Tong, DR Tovey, J Tranter, M Trask, M Tripathi, DR Tronstad, CE Tull, W Turner, L Tvrznikova, U Utku, J Va'vra, A Vacheret, AC Vaitkus, JR Verbus, E Voirin, WL Waldron, A Wang, B Wang, JJ Wang, W Wang, Y Wang, JR Watson, RC Webb, A White, DT White, JT White, RG White, TJ Whitis, M Williams, WJ Wisniewski, MS Witherell, FLH Wolfs, JD Wolfs, S Woodford, D Woodward, SD Worm, CJ Wright, Q Xia, X Xiang, Q Xiao, J Xu, M Yeh, J Yin, I Young, P Zarzhitsky, A Zuckerman, EA Zweig

A machine learning-based methodology for pulse classification in dual-phase xenon time projection chambers

European Physical Journal C Springer Nature 82:6 (2022) 553

Authors:

P Brás, F Neves, A Lindote, A Cottle, R Cabrita, E Lopez Asamar, G Pereira, C Silva, V Solovov, MI Lopes

Cosmogenic production of Ar37 in the context of the LUX-ZEPLIN experiment

Physical Review D American Physical Society (APS) 105:8 (2022) 082004

Authors:

J Aalbers, DS Akerib, AK Al Musalhi, F Alder, SK Alsum, CS Amarasinghe, A Ames, TJ Anderson, N Angelides, HM Araújo, JE Armstrong, M Arthurs, X Bai, A Baker, J Balajthy, S Balashov, J Bang, JW Bargemann, D Bauer, A Baxter, K Beattie, EP Bernard, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, GM Blockinger, E Bodnia, B Boxer, CAJ Brew, P Brás, S Burdin, JK Busenitz, M Buuck, R Cabrita, MC Carmona-Benitez, M Cascella, C Chan, A Chawla, H Chen, NI Chott, A Cole, MV Converse, A Cottle, G Cox, O Creaner, JE Cutter, CE Dahl, A David, L de Viveiros, JEY Dobson, E Druszkiewicz, SR Eriksen, A Fan, S Fayer, NM Fearon, S Fiorucci, H Flaecher, ED Fraser, T Fruth, RJ Gaitskell, J Genovesi, C Ghag, E Gibson, MGD Gilchriese, S Gokhale, MGD van der Grinten, CB Gwilliam, CR Hall, SJ Haselschwardt, SA Hertel, M Horn, DQ Huang, D Hunt, CM Ignarra, O Jahangir, RS James, W Ji, J Johnson, AC Kaboth, AC Kamaha, K Kamdin, D Khaitan, A Khazov, I Khurana, D Kodroff, L Korley, EV Korolkova, H Kraus, S Kravitz, L Kreczko, VA Kudryavtsev, EA Leason, DS Leonard, KT Lesko, C Levy, J Lee, J Lin, A Lindote, R Linehan, WH Lippincott, X Liu, MI Lopes, E Lopez Asamar, B Lopez-Paredes, W Lorenzon, S Luitz, PA Majewski, A Manalaysay, L Manenti, RL Mannino, N Marangou, ME McCarthy, DN McKinsey, J McLaughlin, EH Miller, E Mizrachi, A Monte, ME Monzani, JA Morad, JD Morales Mendoza, E Morrison, BJ Mount, A St. J. Murphy, D Naim, A Naylor, C Nedlik, HN Nelson, F Neves, JA Nikoleyczik, A Nilima, I Olcina, K Oliver-Mallory, S Pal, KJ Palladino, J Palmer, N Parveen, SJ Patton, EK Pease, B Penning, G Pereira, E Perry, J Pershing, A Piepke, D Porzio, Y Qie, J Reichenbacher, CA Rhyne, A Richards, Q Riffard, GRC Rischbieter, R Rosero, P Rossiter, T Rushton, D Santone, ABMR Sazzad, RW Schnee, PR Scovell, S Shaw, TA Shutt, JJ Silk, C Silva, G Sinev, R Smith, M Solmaz, VN Solovov, P Sorensen, J Soria, I Stancu, A Stevens, K Stifter, B Suerfu, TJ Sumner, N Swanson, M Szydagis, WC Taylor, R Taylor, DJ Temples, PA Terman, DR Tiedt, M Timalsina, WH To, Z Tong, DR Tovey, M Trask, M Tripathi, DR Tronstad, W Turner, U Utku, A Vaitkus, B Wang, Y Wang, JJ Wang, W Wang, JR Watson, RC Webb, RG White, TJ Whitis, M Williams, FLH Wolfs, S Woodford, D Woodward, CJ Wright, Q Xia, X Xiang, J Xu, M Yeh

Cosmogenic production of Ar37 in the context of the LUX-ZEPLIN experiment

Phys.Rev.D 105 (2022) 8, 082004

Authors:

J. Aalbers, D.S. Akerib, A.K. Al Musalhi, F. Alder, S.K. Alsum, C.S. Amarasinghe, A. Ames, T.J. Anderson, N. Angelides, H.M. Araújo, J.E. Armstrong, M. Arthurs, X. Bai, A. Baker, J. Balajthy, S. Balashov, J. Bang, J.W. Bargemann, D. Bauer, A. Baxter, K. Beattie, E.P. Bernard, A. Bhatti, A. Biekert, T.P. Biesiadzinski, H.J. Birch, G.M. Blockinger, E. Bodnia, B. Boxer, C.A.J. Brew, P. Brás, S. Burdin, J.K. Busenitz, M. Buuck, R. Cabrita, M.C. Carmona-Benitez, M. Cascella, C. Chan, A. Chawla, H. Chen, N.I. Chott, A. Cole, M.V. Converse, A. Cottle, G. Cox, O. Creaner, J.E. Cutter, C.E. Dahl, A. David, L. de Viveiros, J.E.Y. Dobson, E. Druszkiewicz, S.R. Eriksen, A. Fan, S. Fayer, N.M. Fearon, S. Fiorucci, H. Flaecher, E.D. Fraser, T. Fruth, R.J. Gaitskell, J. Genovesi, C. Ghag, E. Gibson, M.G.D. Gilchriese, S. Gokhale, M.G.D.van der Grinten, C.B. Gwilliam, C.R. Hall, S.J. Haselschwardt, S.A. Hertel, M. Horn, D.Q. Huang, D. Hunt, C.M. Ignarra, O. Jahangir, R.S. James, W. Ji, J. Johnson, A.C. Kaboth, A.C. Kamaha, K. Kamdin, D. Khaitan, A. Khazov, I. Khurana, D. Kodroff, L. Korley, E.V. Korolkova, H. Kraus, S. Kravitz, L. Kreczko, V.A. Kudryavtsev, E.A. Leason, D.S. Leonard, K.T. Lesko, C. Levy, J. Lee, J. Lin, A. Lindote, R. Linehan , W.H. Lippincott, X. Liu, M.I. Lopes, E. Lopez Asamar, B. Lopez-Paredes, W. Lorenzon, S. Luitz, P.A. Majewski, A. Manalaysay, L. Manenti, R.L. Mannino, N. Marangou, M.E. McCarthy, D.N. McKinsey, J. McLaughlin, E.H. Miller, E. Mizrachi, A. Monte, M.E. Monzani, J.A. Morad, J.D. Morales Mendoza, E. Morrison, B.J. Mount, A.St.J. Murphy, D. Naim, A. Naylor, C. Nedlik, H.N. Nelson, F. Neves, J.A. Nikoleyczik, A. Nilima, I. Olcina, K. Oliver-Mallory, S. Pal, K.J. Palladino, J. Palmer, N. Parveen, S.J. Patton, E.K. Pease, B. Penning, G. Pereira, E. Perry, J. Pershing, A. Piepke, D. Porzio, Y. Qie, J. Reichenbacher, C.A. Rhyne, A. Richards, Q. Riffard, %Q. Riffard, G.R.C. Rischbieter, R. Rosero, P. Rossiter, T. Rushton, D. Santone, A.B.M.R. Sazzad, R.W. Schnee, P.R. Scovell, S. Shaw, T.A. Shutt, J.J. Silk, C. Silva, G. Sinev, R. Smith, M. Solmaz, V.N. Solovov, P. Sorensen, J. Soria, I. Stancu, A. Stevens, K. Stifter, B. Suerfu, T.J. Sumner, N. Swanson, M. Szydagis, W.C. Taylor, R. Taylor, D.J. Temples, P.A. Terman, D.R. Tiedt, M. Timalsina, W.H. To, Z. Tong, D.R. Tovey, M. Trask, M. Tripathi, D.R. Tronstad, W. Turner, U. Utku, A. Vaitkus, B. Wang, Y. Wang, J.J. Wang, W. Wang, J.R. Watson, R.C. Webb, R.G. White, T.J. Whitis, M. Williams, F.L.H. Wolfs, S. Woodford, D. Woodward, C.J. Wright, Q. Xia, X. Xiang, J. Xu, M. Yeh

Abstract:

We estimate the amount of Ar37 produced in natural xenon via cosmic-ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth’s surface. We then calculate the resulting Ar37 concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage, and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea-level production rate of Ar37 in natural xenon is estimated to be 0.024  atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1  tonne/month, the average Ar37 activity after 10 tons are purified and transported underground is 0.058−0.090  μBq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic Ar37 will appear as a noticeable background in the early science data, while decaying with a 35-day half-life. This newly noticed production mechanism of Ar37 should be considered when planning for future liquid-xenon-based experiments

Direct detection of dark matter-APPEC committee report.

Reports on progress in physics. Physical Society (Great Britain) 85:5 (2022)

Authors:

Julien Billard, Mark Boulay, Susana Cebrián, Laura Covi, Giuliana Fiorillo, Anne Green, Joachim Kopp, Béla Majorovits, Kimberly Palladino, Federica Petricca, Leszek Roszkowski Chair, Marc Schumann

Abstract:

This report provides an extensive review of the experimental programme of direct detection searches of particle dark matter. It focuses mostly on European efforts, both current and planned, but does it within a broader context of a worldwide activity in the field. It aims at identifying the virtues, opportunities and challenges associated with the different experimental approaches and search techniques. It presents scientific and technological synergies, both existing and emerging, with some other areas of particle physics, notably collider and neutrino programmes, and beyond. It addresses the issue of infrastructure in light of the growing needs and challenges of the different experimental searches. Finally, the report makes a number of recommendations from the perspective of a long-term future of the field. They are introduced, along with some justification, in the opening overview and recommendations section and are next summarised at the end of the report. Overall, we recommend that the direct search for dark matter particle interactions with a detector target should be given top priority in astroparticle physics, and in all particle physics, and beyond, as a positive measurement will provide the most unambiguous confirmation of the particle nature of dark matter in the Universe.