Limits to Electrical Mobility in Lead-Halide Perovskite Semiconductors

(2021)

Authors:

Chelsea Q Xia, Jiali Peng, Samuel Poncé, Jay B Patel, Adam D Wright, Timothy W Crothers, Mathias Uller Rothmann, Juliane Borchert, Rebecca L Milot, Hans Kraus, Qianqian Lin, Feliciano Giustino, Laura M Herz, Michael B Johnston

Design and construction of Xenoscope — a full-scale vertical demonstrator for the DARWIN observatory

Journal of Instrumentation IOP Publishing 16:08 (2021) P08052-P08052

Authors:

L Baudis, Y Biondi, M Galloway, F Girard, A Manfredini, N McFadden, R Peres, P Sanchez-Lucas, K Thieme

Abstract:

Abstract The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and other rare interactions. It will operate a 50 t liquid xenon detector, with 40 t in the time projection chamber (TPC). To inform the final detector design and technical choices, a series of technological questions must first be addressed. Here we describe a full-scale demonstrator in the vertical dimension, Xenoscope, with the main goal of achieving electron drift over a 2.6 m distance, which is the scale of the DARWIN TPC. We have designed and constructed the facility infrastructure, including the cryostat, cryogenic and purification systems, the xenon storage and recuperation system, as well as the slow control system. We have also designed a xenon purity monitor and the TPC, with the fabrication of the former nearly complete. In a first commissioning run of the facility without an inner detector, we demonstrated the nominal operational reach of Xenoscope and benchmarked the components of the cryogenic and slow control systems, demonstrating reliable and continuous operation of all subsystems over 40 days. The infrastructure is thus ready for the integration of the purity monitor, followed by the TPC. Further applications of the facility include R&D on the high voltage feedthrough for DARWIN, measurements of electron cloud diffusion, as well as measurements of optical properties of liquid xenon. In the future, Xenoscope will be available as a test platform for the DARWIN collaboration to characterise new detector technologies.

DARWIN – a next-generation liquid xenon observatory for dark matter and neutrino physics

Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021) Sissa Medialab (2021) 548-548

Performance of ZnSe-based scintillators at low temperatures

Journal of Luminescence Elsevier 239 (2021) 118360

Authors:

S Galkin, I Rybalka, L Sidelnikova, A Voloshinovskii, H Kraus, V Mykhaylyk

Abstract:

Applications that utilize scintillation detectors at low temperatures are growing in number. Many of these require materials with high light yield and a fast response. Here we report on the low-temperature characterisation of ZnSe doped with Al or Te, respectively. The X-ray luminescence and decay curves were measured over the 77–295 K temperature range, and alpha particle excitation was used to examine scintillation light output and decay kinetics over the range 9–295 K. A significant improvement of the scintillation characteristics was observed at cooling below 100 K. The scintillation light yield of the crystals increases by a factor about two, and the decay time constant decreases by almost an order of magnitude to 0.3–0.4 μs. These improvements enhance the potential of ZnSe-based crystals for application in cryogenic scintillation detectors of ionising radiation.

Performance of ZnSe-based scintillators at low temperatures

(2021)

Authors:

S Galkin, I Rybalka, L Sidelnikova, A Voloshinovskii, H Kraus, V Mykhaylyk