Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment

Astroparticle Physics Elseveir 125 (2020) 102480

Authors:

DS Akerib, CW Akerlof, A Alqahtani, Kathryn Boast, C Carels, A Cottle, T Fruth, E Gibson, H Kraus, F-T Liao, KJ Palladino, A Stevens, M Tan

Abstract:

The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2) x 10–12 pb at a WIMP mass of 40  GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data.

Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering

(2020)

Authors:

J Aalbers, F Agostini, SEM Ahmed Maouloud, M Alfonsi, L Althueser, F Amaro, J Angevaare, VC Antochi, B Antunovic, E Aprile, L Arazi, F Arneodo, M Balzer, L Baudis, D Baur, ML Benabderrahmane, Y Biondi, A Bismark, C Bourgeois, A Breskin, PA Breur, A Brown, E Brown, S Brünner, G Bruno, R Budnik, C Capelli, J Cardoso, D Cichon, M Clark, AP Colijn, J Conrad, JJ Cuenca-García, JP Cussonneau, MP Decowski, A Depoian, J Dierle, P Di Gangi, A Di Giovanni, S Diglio, D Douillet, G Drexlin, K Eitel, R Engel, E Erdal, AD Ferella, H Fischer, P Fischer, W Fulgione, P Gaemers, M Galloway, F Gao, D Giovagnoli, F Girard, R Glade-Beucke, F Glück, L Grandi, S Grohmann, R Größle, R Gumbsheimer, V Hannen, S Hansmann-Menzemer, C Hils, B Holzapfel, J Howlett, G Iaquaniello, F Jörg, M Keller, J Kellerer, G Khundzakishvili, B Kilminster, M Kleifges, TK Kleiner, G Koltmann, A Kopec, A Kopmann, LM Krauss, F Kuger, L LaCascio, H Landsman, RF Lang, S Lindemann, M Lindner, F Lombardi, JAM Lopes, A Loya Villalpando, Y Ma, C Macolino, J Mahlstedt, A Manfredini, T Marrodán Undagoitia, J Masbou, D Masson, E Masson, N McFadden, P Meinhardt, R Meyer, B Milosevic, S Milutinovic, A Molinario, CMB Monteiro, K Morå, E Morteau, Y Mosbacher, M Murra, JL Newstead, K Ni, UG Oberlack, M Obradovic, K Odgers, I Ostrovskiy, J Palacio, M Pandurovic, B Pelssers, R Peres, J Pienaar, M Pierre, V Pizzella, G Plante, J Qi, J Qin, D Ramírez García, SE Reichard, N Rupp, P Sanchez-Lucas, J Santos, G Sartorelli, D Schulte, H-C Schultz-Coulon, H Schulze Eißing, M Schumann, L Scotto Lavina, M Selvi, P Shagin, S Sharma, W Shen, M Silva, H Simgen, M Steidl, S Stern, D Subotic, P Szabo, A Terliuk, C Therreau, D Thers, K Thieme, F Toennies, R Trotta, CD Tunnell, K Valerius, G Volta, D Vorkapic, M Weber, Y Wei, C Weinheimer, M Weiss, D Wenz, C Wittweg, J Wolf, S Wuestling, M Wurm, Y Xing, T Zhu, Y Zhu, JP Zopounidis, K Zuber

The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs

(2020)

Authors:

DS Akerib, CW Akerlof, D Yu Akimov, A Alquahtani, SK Alsum, TJ Anderson, N Angelides, HM Araújo, A Arbuckle, JE Armstrong, M Arthurs, H Auyeung, S Aviles, X Bai, AJ Bailey, J Balajthy, S Balashov, J Bang, MJ Barry, D Bauer, P Bauer, A Baxter, J Belle, P Beltrame, J Bensinger, T Benson, EP Bernard, A Bernstein, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, B Birrittella, KE Boast, AI Bolozdynya, EM Boulton, B Boxer, R Bramante, S Branson, P Brás, M Breidenbach, CAJ Brew, JH Buckley, VV Bugaev, R Bunker, S Burdin, JK Busenitz, R Cabrita, JS Campbell, C Carels, DL Carlsmith, B Carlson, MC Carmona-Benitez, M Cascella, C Chan, JJ Cherwinka, AA Chiller, C Chiller, NI Chott, A Cole, J Coleman, D Colling, RA Conley, A Cottle, R Coughlen, G Cox, WW Craddock, D Curran, A Currie, JE Cutter, JP da Cunhaw, CE Dahl, S Dardin, S Dasu, J Davis, TJR Davison, L de Viveiros, N Decheine, A Dobi, JEY Dobson, E Druszkiewicz, A Dushkin, TK Edberg, WR Edwards, BN Edwards, J Edwards, MM Elnimr, WT Emmet, SR Eriksen, CH Faham, A Fan, S Fayer, S Fiorucci, H Flaecher, IM Fogarty Florang, P Ford, VB Francis, ED Fraser, F Froborg, T Fruth, RJ Gaitskell, NJ Gantos, D Garcia, VM Gehman, R Gelfand, J Genovesi, RM Gerhard, C Ghag, E Gibson, MGD Gilchriese, S Gokhale, B Gomber, TG Gonda, A Greenall, S Greenwood, G Gregerson, MGD van der Grinten, CB Gwilliam, CR Hall, D Hamilton, S Hans, K Hanzel, T Harrington, A Harrison, J Harrison, C Hasselkus, SJ Haselschwardt, D Hemer, SA Hertel, J Heise, S Hillbrand, O Hitchcock, C Hjemfelt, MD Hoff, B Holbrook, E Holtom, JY-K Hor, M Horn, DQ Huang, TW Hurteau, CM Ignarra, MN Irving, RG Jacobsen, O Jahangir, SN Jeffery, W Ji, M Johnson, J Johnson, P Johnson, WG Jones, AC Kaboth, A Kamaha, K Kamdin, V Kasey, K Kazkaz, J Keefner, D Khaitan, M Khaleeq, A Khazov, AV Khromov, I Khurana, YD Kim, WT Kim, CD Kocher, D Kodroff, AM Konovalov, L Korley, EV Korolkova, M Koyuncu, J Kras, H Kraus, SW Kravitz, HJ Krebs, L Kreczko, B Krikler, VA Kudryavtsev, AV Kumpan, S Kyre, AR Lambert, B Landerud, NA Larsen, A Laundrie, EA Leason, HS Lee, J Lee, C Lee, BG Lenardo, DS Leonard, R Leonard, KT Lesko, C Levy, J Li, Y Liu, J Liao, F-T Liao, J Lin, A Lindote, R Linehan, WH Lippincott, R Liu, X Liu, C Loniewski, MI Lopes, E Lopez-Asamar, B López Paredes, W Lorenzon, D Lucero, S Luitz, JM Lyle, C Lynch, PA Majewski, J Makkinje, DC Malling, A Manalaysay, L Manenti, RL Mannino, N Marangou, DJ Markley, P MarrLaundrie, TJ Martin, MF Marzioni, C Maupin, CT McConnell, DN McKinsey, J McLaughlin, D-M Mei, Y Meng, EH Miller, ZJ Minaker, E Mizrachi, J Mock, D Molash, A Monte, ME Monzani, JA Morad, E Morrison, BJ Mount, A St J Murphy, D Naim, A Naylor, C Nedlik, C Nehrkorn, HN Nelson, J Nesbit, F Neves, JA Nikkel, JA Nikoleyczik, A Nilima, J O'Dell, H Oh, FG O'Neill, K O'Sullivan, I Olcina, MA Olevitch, KC Oliver-Mallory, L Oxborough, A Pagac, D Pagenkopf, S Pal, KJ Palladino, VM Palmaccio, J Palmer, M Pangilinan, N Parveen, SJ Patton, EK Pease, BP Penning, G Pereira, C Pereira, IB Peterson, A Piepke, S Pierson, S Powell, RM Preece, K Pushkin, Y Qie, M Racine, BN Ratcliff, J Reichenbacher, L Reichhart, CA Rhyne, A Richards, Q Riffard, GRC Rischbieter, JP Rodrigues, HJ Rose, R Rosero, P Rossiter, R Rucinski, G Rutherford, JS Saba, L Sabarots, D Santone, M Sarychev, ABMR Sazzad, RW Schnee, M Schubnell, PR Scovell, M Severson, D Seymour, S Shaw, GW Shutt, TA Shutt, JJ Silk, C Silva, K Skarpaas, W Skulski, AR Smith, RJ Smith, RE Smith, J So, M Solmaz, VN Solovov, P Sorensen, VV Sosnovtsev, I Stancu, MR Stark, S Stephenson, N Stern, A Stevens, TM Stiegler, K Stifter, R Studley, TJ Sumner, K Sundarnath, P Sutcliffe, N Swanson, M Szydagis, M Tan, WC Taylor, R Taylor, DJ Taylor, D Temples, BP Tennyson, PA Terman, KJ Thomas, JA Thomson, DR Tiedt, M Timalsina, WH To, A Tomás, TE Tope, M Tripathi, DR Tronstad, CE Tull, W Turner, L Tvrznikova, M Utes, U Utku, S Uvarov, J Va'vra, A Vacheret, A Vaitkus, JR Verbus, T Vietanen, E Voirin, CO Vuosalo, S Walcott, WL Waldron, K Walker, JJ Wang, R Wang, L Wang, W Wang, Y Wang, JR Watson, J Migneault, S Weatherly, RC Webb, W-Z Wei, M While, RG White, JT White, DT White, TJ Whitis, WJ Wisniewski, K Wilson, MS Witherell, FLH Wolfs, JD Wolfs, D Woodward, SD Worm, X Xiang, Q Xiao, J Xu, M Yeh, J Yin, I Young, C Zhang, P Zarzhitsky

Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures

Scientific Reports Nature Research 10 (2020) 8601

Authors:

Vb Mykhaylyk, H Kraus, V Kapustianyk, Hj Kim, P Mercere, M Rudko, P Da Silva, O Antonyak, M Dendebera

Abstract:

Highly efficient scintillation crystals with short decay times are indispensable for improving the performance of numerous detection and imaging instruments that use- X-rays, gamma-quanta, ionising particles or neutrons. Halide perovskites emerged recently as very promising materials for detection of ionising radiation that motivated further exploration of the materials. In this work, we report on excellent scintillation properties of CsPbBr3 crystals when cooled to cryogenic temperatures. The temperature dependence of luminescence spectra, decay kinetics and light yield under excitation with X-rays and α-particles was investigated. It is shown that the observed changes of spectral and kinetic characteristics of the crystal with temperature can be consistently explained by radiative decay of free excitons, bound and trapped excitons as well as electron-hole pairs originating from their disintegration. It has been found that the crystal exhibits a fast decay time constant of 1 ns at 7 K. The scintillation light yield of CsPbBr3 at 7 K is assessed to be 50,000 ± 10,000 ph/MeV at excitation with 12 keV X-rays and 109,000 ± 22,000 ph/MeV at excitation with α-particles of 241Am. This finding places CsPbBr3 in an excellent position for the development of a new generation of cryogenic, efficient scintillation detectors with nanosecond response time, marking a step-change in opportunities for scintillator-based applications.

The first dual-phase xenon TPC equipped with silicon photomultipliers and characterisation with $$^{37}\hbox {Ar}$$

The European Physical Journal C SpringerOpen 80:5 (2020) 477

Authors:

L Baudis, Y Biondi, M Galloway, F Girard, S Hochrein, S Reichard, P Sanchez-Lucas, K Thieme, J Wulf

Abstract:

The DARWIN/XLZD experiment is a next-generation dark matter detector with a multi-ten-ton liquid xenon time projection chamber at its core. Its principal goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until interactions of astrophysical neutrinos will become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the liquid xenon target will be observed by VUV-sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs with masses above $\sim$5\,GeV, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions, and in particular also to bosonic dark matter candidates with masses at the keV-scale. We present the detector concept, discuss the main sources of backgrounds, the technological challenges and some of the ongoing detector design and R&D efforts, as well as the large-scale demonstrators. We end by discussing the sensitivity to particle dark matter interactions.Comment: 7 pages, 10 figures. Accepted to appear in Nuc. Phys. B special issue "Nobel Symposium on Dark Matter" (NS 182