LOFAR Discovery of a 23.5 s Radio Pulsar
The Astrophysical Journal American Astronomical Society 866:1 (2018) 54
The dispersion-brightness relation for fast radio bursts from a wide-field survey
Nature Springer Nature 562 (2018) 386-390
Abstract:
Despite considerable efforts over the past decade, only 34 fast radio bursts-intense bursts of radio emission from beyond our Galaxy-have been reported1,2. Attempts to understand the population as a whole have been hindered by the highly heterogeneous nature of the searches, which have been conducted with telescopes of different sensitivities, at a range of radio frequencies, and in environments corrupted by different levels of radio-frequency interference from human activity. Searches have been further complicated by uncertain burst positions and brightnesses-a consequence of the transient nature of the sources and the poor angular resolution of the detecting instruments. The discovery of repeating bursts from one source3, and its subsequent localization4 to a dwarf galaxy at a distance of 3.7 billion light years, confirmed that the population of fast radio bursts is located at cosmological distances. However, the nature of the emission remains elusive. Here we report a well controlled, wide-field radio survey for these bursts. We found 20, none of which repeated during follow-up observations between 185-1,097 hours after the initial detections. The sample includes both the nearest and the most energetic bursts detected so far. The survey demonstrates that there is a relationship between burst dispersion and brightness and that the high-fluence bursts are the nearby analogues of the more distant events found in higher-sensitivity, narrower-field surveys5.The Lockman Hole Project: new constraints on the sub-mJy source counts from a wide-area 1.4 GHz mosaic
Monthly Notices of the Royal Astronomical Society Oxford University Press 481:4 (2018) 4548-4565
Abstract:
This paper is part of a series discussing the results obtained in the framework of a wide international collaboration - the Lockman Hole Project - aimed at improving the extensive multiband coverage available in the Lockman Hole region, through novel deep, wide-area, multifrequency (60, 150, 350 MHz, and 1.4 GHz) radio surveys. This multifrequency, multiband information will be exploited to get a comprehensive view of star formation and active galactic nucleus activities in the high-redshift Universe from a radio perspective. In this paper, we present novel 1.4 GHz mosaic observations obtained with the Westerbork Synthesis Radio Telescope. With an area coverage of 6.6 deg2, this is the largest survey reaching an rms noise of 11 μJy beam-1. In this paper, we present the source catalogue (~6000 sources with flux densities S ≳ 55 μJy (5σ), and we discuss the 1.4 GHz source counts derived from it. Our source counts provide very robust statistics in the flux range 0.1 < S < 1 mJy, and are in excellent agreement with other robust determinations obtained at lower and higher flux densities. A clear excess is found with respect to the counts predicted by the semi-empirical radio sky simulations developed in the framework of the Square Kilometre Array Simulated Skies project. A preliminary analysis of the identified (and classified) sources suggests this excess is to be ascribed to star-forming galaxies, which seem to show a steeper evolution than predicted.A NICER discovery of a low-frequency quasi-periodic oscillation in the soft-intermediate state of MAXI J1535–571
Astrophysical Journal Letters American Astronomical Society 865:2 (2018)
Abstract:
We present the discovery of a low-frequency ≈5.7 Hz quasi-periodic oscillation (QPO) feature in observations of the black hole X-ray binary MAXI J1535-571 in its soft-intermediate state, obtained in 2017 September-October by the Neutron Star Interior Composition Explorer. The feature is relatively broad (compared to other low-frequency QPOs; quality factor Q ≈ 2) and weak (1.9% rms in 3-10 keV), and is accompanied by a weak harmonic and low-amplitude broadband noise. These characteristics identify it as a weak Type A/B QPO, similar to ones previously identified in the soft-intermediate state of the transient black hole X-ray binary XTE J1550-564. The lag-energy spectrum of the QPO shows increasing soft lags toward lower energies, approaching 50 ms at 1 keV (with respect to a 3-10 keV continuum). This large phase shift has similar amplitude but opposite sign to that seen in Rossi X-Ray Timing Explorer data for a Type B QPO from the transient black hole X-ray binary GX 339-4. Previous phase-resolved spectroscopy analysis of the Type B QPO in GX 339-4 pointed toward a precessing jet-like corona illuminating the accretion disk as the origin of the QPO signal. We suggest that this QPO in MAXI J1535-571 may have the same origin, with the different lag sign depending on the scale height of the emitting region and the observer inclination angle.An evolving jet from a strongly-magnetised accreting X-ray pulsar
ArXiv 1809.10204 (2018)