A wildly flickering jet in the black hole X-ray binary MAXI J1535–571

Astrophysical Journal American Astronomical Society 867:2 (2018)

Authors:

M Cristina Baglio, DM Russell, P Casella, H Al Noori, A Al Yazeedi, T Belloni, DAH Buckley, M Cadolle Bel, C Ceccobello, S Corbel, F Coti Zelati, M Díaz Trigo, Robert Fender, E Gallo, P Gandhi, J Homan, KII Koljonen, F Lewis, TJ Maccarone, J Malzac, S Markoff, JCA Miller-Jones, K O’Brien, TD Russell, P Saikia, T Shahbaz, GR Sivakoff, R Soria, V Testa, AJ Tetarenko, ME Van Den Ancker, FM Vincentelli

Abstract:

We report on the results of optical, near-infrared (NIR), and mid-infrared observations of the black hole X-ray binary candidate (BHB) MAXI J1535–571 during its 2017/2018 outburst. During the first part of the outburst (MJD 58004–58012), the source shows an optical–NIR spectrum that is consistent with an optically thin synchrotron power law from a jet. After MJD 58015, however, the source faded considerably, the drop in flux being much more evident at lower frequencies. Before the fading, we measure a dereddened flux density of gsim100 mJy in the mid-infrared, making MAXI J1535–571 one of the brightest mid-infrared BHBs known so far. A significant softening of the X-ray spectrum is evident contemporaneous with the infrared fade. We interpret it as being due to the suppression of the jet emission, similar to the accretion–ejection coupling seen in other BHBs. However, MAXI J1535–571 did not transition smoothly to the soft state, instead showing X-ray hardness deviations associated with infrared flaring. We also present the first mid-IR variability study of a BHB on minute timescales, with a fractional rms variability of the light curves of ~15%–22%, which is similar to that expected from the internal shock jet model, and much higher than the optical fractional rms (lesssim7%). These results represent an excellent case of multiwavelength jet spectral timing and demonstrate how rich, multiwavelength time-resolved data of X-ray binaries over accretion state transitions can help in refining models of the disk–jet connection and jet launching in these systems.

The relation between galaxy density and radio jet power for 1.4 GHz VLA selected AGNs in Stripe 82

Monthly Notices of the Royal Astronomical Society Oxford University Press 482:4 (2018) 5156-5166

Authors:

S Kolwa, Matthew J Jarvis, K McAlpine, Ian Heywood

Abstract:

Using a Karl G. Jansky Very Large Array (VLA) L-band (1-2 GHz) survey covering∼100 deg^2 of the Stripe 82 field, we have obtained a catalogue of 2716 radio AGNs. For these AGNs, we investigate the impact of galaxy density on 1.4 GHz radio luminosity (L1.4).We determine their close environment densities using the surface density parameter, ΣN, for N = 2 and N = 5, which we bin by redshift to obtain a pseudo-3D galaxy density measure. Matching the radio AGNs to sources without radio detections in terms of redshift, K-band magnitude and (g−K) colour index, we obtain samples of control galaxies and determine whether radio AGN environments differ from this general population. Our results indicate that the environmental density of radio AGNs and their radio luminosity are not correlated up to z ∼ 0.8, over the luminosity range 10^23 < (L1.4/W Hz−1) < 10^26.We also find that, when using a control sample matched in terms of redshift, K-band magnitude and colour, environments of radio AGNs are similar to those of the control sample but with an excess of overdense regions in which radio AGNs aremore prevalent. Our results suggest that the <1Mpc-scale galaxy environment plays some role in determining whether a galaxy produces a radio AGN. The jet power, however, does not correlate with environment. From this, we infer that secular processes, e.g. accretion flows of cold gas to the central black hole are more critical in fuelling radio AGN activity than radio jet power.

Cold gas outflows from the Small Magellanic Cloud traced with ASKAP

NATURE ASTRONOMY 2:11 (2018) 901-906

Authors:

NM McClure-Griffiths, H Denes, JM Dickey, S Stanimirovic, L Staveley-Smith, Katherine Jameson, Enrico Di Teodoro, James R Allison, JD Collier, AP Chippendale, T Franzen, Gulay Gurkan, G Heald, A Hotan, D Kleiner, K Lee-Waddell, D McConnell, A Popping, Jonghwan Rhee, CJ Riseley, MA Voronkov, M Whiting

The radio-bright accreting millisecond X-ray pulsar IGR J17591-2342

ArXiv 1811.00085 (2018)

Authors:

TD Russell, N Degenaar, R Wijnands, J van den Eijnden, NV Gusinskaia, JWT Hessels, JCA Miller-Jones

Ultra-high energy cosmic rays from shocks in the lobes of powerful radio galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 482:4 (2018) 4303-4321

Authors:

James Matthews, Bryn Bell, Katherine Blundell, AT Araudo

Abstract:

The origin of ultra-high energy cosmic rays (UHECRs) has been an open question for decades. Here, we use a combination of hydrodynamic simulations and general physical arguments to demonstrate that UHECRs can in principle be produced by diffusive shock acceleration (DSA) in shocks in the backflowing material of radio galaxy lobes. These shocks occur after the jet material has passed through the relativistic termination shock. Recently, several authors have demonstrated that highly relativistic shocks are not effective in accelerating UHECRs. The shocks in our proposed model have a range of non-relativistic or mildly relativistic shock velocities more conducive to UHECR acceleration, with shock sizes in the range 1 − 10 kpc. Approximately 10% of the jet’s energy flux is focused through a shock in the backflow of M > 3. Although the shock velocities can be low enough that acceleration to high energy via DSA is still efficient, they are also high enough for the Hillas energy to approach 1019−20 eV, particularly for heavier CR composition and in cases where fluid elements pass through multiple shocks. We discuss some of the more general considerations for acceleration of particles to ultra-high energy with reference to giant-lobed radio galaxies such as Centaurus A and Fornax A, a class of sources which may be responsible for the observed anisotropies from UHECR observatories.