Discovery of Extended Infrared Emission around the Neutron Star RXJ0806.4–4123* * Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14745. † † Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

The Astrophysical Journal American Astronomical Society 865:1 (2018) 1

Authors:

B Posselt, GG Pavlov, Ü Ertan, S Çalışkan, KL Luhman, CC Williams

Discovery of extended infrared emission around the neutron star RX J0806.4-4123

(2018)

Authors:

B Posselt, GG Pavlov, Ü Ertan, S Çalışkan, KL Luhman, CC Williams

Upper Limits on the Rapid Cooling of the Central Compact Object in Cas A

The Astrophysical Journal American Astronomical Society 864:2 (2018) 135

Authors:

B Posselt, GG Pavlov

The first tidal disruption flare in ZTF: from photometric selection to multi-wavelength characterization

(2018)

Authors:

Sjoert van Velzen, Suvi Gezari, S Bradley Cenko, Erin Kara, James C Miller-Jones, Tiara Hung, Joe Bright, Nathaniel Roth, Nadejda Blagorodnova, Daniela Huppenkothen, Lin Yan, Eran Ofek, Jesper Sollerman, Sara Frederick, Charlotte Ward, Matthew J Graham, Rob Fender, Mansi M Kasliwal, Chris Canella, Robert Stein, Matteo Giomi, Valery Brinnel, Jakob Santen, Jakob Nordin, Eric C Bellm, Richard Dekany, Christoffer Fremling, V Zach Golkhou, Thomas Kupfer, Shrinivas R Kulkarni, Russ R Laher, Ashish Mahabal, Frank J Masci, Adam A Miller, James D Neill, Reed Riddle, Mickael Rigault, Ben Rusholme, Maayane T Soumagnac, Yutaro Tachibana

The VANDELS ESO public spectroscopic survey. Observations and first data release

Astronomy & Astrophysics EDP Sciences 616 (2018) A174

Authors:

L Pentericci, R McLure, B Garilli, O Cucciati, P Franzetti, A Iovino, R Amorin, M Bolzonella, A Bongiorno, AC Carnall, M Castellano, A Cimatti, M Cirasuolo, F Cullen, S Debarros, JS Dunlop, D Elbaz, S Finkelstein, Matthew J Jarvis, Rebecca AA Bowler

Abstract:

This paper describes the observations and the first data release (DR1) of the ESO public spectroscopic survey “VANDELS, a deep VIMOS survey of the CANDELS CDFS and UDS fields”. The main targets of VANDELS are star-forming galaxies at redshift 2:4 < z < 5:5, an epoch when the Universe had not yet reached 20% of its current age, and massive passive galaxies in the range 1 < z < 2:5. By adopting a strategy of ultra-long exposure times, ranging from a minimum of 20 h to a maximum of 80 h per source, VANDELS is specifically designed to be the deepest-ever spectroscopic survey of the high-redshift Universe. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the survey is obtaining ultra-deep optical spectroscopy covering the wavelength range 4800–10 000 Å with a sufficiently high signal-to-noise ratio to investigate the astrophysics of high-redshift galaxy evolution via detailed absorption line studies of well-defined samples of high-redshift galaxies. VANDELS-DR1 is the release of all medium-resolution spectroscopic data obtained during the first season of observations, on a 0.2 square degree area centered around the CANDELS-CDFS (Chandra deep-field south) and CANDELS-UDS (ultra-deep survey) areas. It includes data for all galaxies for which the total (or half of the total) scheduled integration time was completed. The DR1 contains 879 individual objects, approximately half in each of the two fields, that have a measured redshift, with the highest reliable redshifts reaching zspec ~ 6. In DR1 we include fully wavelengthcalibrated and flux-calibrated 1D spectra, the associated error spectrum and sky spectrum, and the associated wavelength-calibrated 2D spectra. We also provide a catalog with the essential galaxy parameters, including spectroscopic redshifts and redshift quality flags measured by the collaboration.We present the survey layout and observations, the data reduction and redshift measurement procedure, and the general properties of the VANDELS-DR1 sample. In particular, we discuss the spectroscopic redshift distribution and the accuracy of the photometric redshifts for each individual target category, and we provide some examples of data products for the various target types and the different quality flags. All VANDELS-DR1 data are publicly available and can be retrieved from the ESO archive. Two further data releases are foreseen in the next two years, and a final data release is currently scheduled for June 2020, which will include an improved rereduction of the entire spectroscopic data set.