Do reverberation mapping analyses provide an accurate picture of the broad-line region?

Monthly Notices of the Royal Astronomical Society Oxford University Press 488:2 (2019) 2780-2799

Authors:

SW Mangham, C Knigge, P Williams, K Horne, A Pancoast, James Matthews, KS Long, N Higginbottom

Abstract:

Reverberation mapping (RM) is a powerful approach for determining the nature of the broad-line region (BLR) in active galactic nuclei. However, inferring physical BLR properties from an observed spectroscopic time series is a difficult inverse problem. Here, we present a blind test of two widely used RM methods: MEMECHO (developed by Horne) and CARAMEL (developed by Pancoast and collaborators). The test data are simulated spectroscopic time series that track the Hα emission line response to an empirical continuum light curve. The underlying BLR model is a rotating, biconical accretion disc wind, and the synthetic spectra are generated via self-consistent ionization and radiative transfer simulations. We generate two mock data sets, representing Seyfert galaxies and QSOs. The Seyfert model produces a largely negative response, which neither method can recover. However, both fail ‘gracefully', neither generating spurious results. For the QSO model both CARAMEL and expert interpretation of MEMECHOś output both capture the broadly annular, rotation-dominated nature of the line-forming region, though MEMECHO analysis overestimates its size by 50 per cent, but CARAMEL is unable to distinguish between additional inflow and outflow components. Despite fitting individual spectra well, the CARAMEL velocity-delay maps and RMS line profiles are strongly inconsistent with the input data. Finally, since the Hα line-forming region is rotation dominated, neither method recovers the disc wind nature of the underlying BLR model. Thus considerable care is required when interpreting the results of RM analyses in terms of physical models.

Black hole – Galaxy correlations in SIMBA

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:4 (2019) 5764-5780

Authors:

N Thomas, R Dave, D Angles-Alcazar, Matthew Jarvis

Abstract:

We examine the co-evolution of galaxies and supermassive black holes in the simba cosmological hydrodynamic simulation. simba grows black holes via gravitational torque-limited accretion from cold gas and Bondi accretion from hot gas, while feedback from black holes is modelled in radiative and jet modes depending on the Eddington ratio (fEdd). simba shows generally good agreement with local studies of black hole properties, such as the black hole mass-stellar velocity dispersion (MBH-σ) relation, the black hole accretion rate versus star formation rate (BHAR-SFR), and the black hole mass function. MBH-σ evolves such that galaxies at a given MBH have higher σ at higher redshift, consistent with no evolution in MBH-M∗. For MBH ≤ 108 M⊙, fEdd is anticorrelated with MBH since the BHAR is approximately independent of MBH, while at higher masses fEdd-MBH flattens and has a larger scatter. BHAR versus SFR is invariant with redshift, but fEdd drops steadily with time at a given MBH, such that all but the most massive black holes are accreting in a radiatively efficient mode at z ≥ 2. The black hole mass function amplitude decreases with redshift and is locally dominated by quiescent galaxies for MBH > 108 M⊙, but for z≥ 1 star-forming galaxies dominate at all MBH. The z = 0 fEdd distribution is roughly lognormal with a peak at fEdd ≤ 0.01 as observed, shifting to higher fEdd at higher redshifts. Finally, we study the dependence of black hole properties with H i content and find that the correlation between gas content and SFR is modulated by black hole properties, such that higher SFR galaxies at a given gas content have smaller black holes with higher fEdd.

Cosmic Ray Acceleration in Hydromagnetic Flux Tubes

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)

Authors:

Anthony BELL, James Matthews, Katherine Blundell, Anabella Araudo

Abstract:

We find that hydromagnetic flux tubes in back-flows in the lobes of radio galaxies offer a suitable environment for the acceleration of cosmic rays (CR) to ultra-high energies. We show that CR can reach the Hillas (1984) energy even if the magnetised turbulence in the flux tube is not sufficiently strong for Bohm diffusion to apply. First-order Fermi acceleration by successive weak shocks in a hydromagnetic flux tube is shown to be equivalent to second-order Fermi acceleration by strong turbulence.

A rapidly-changing jet orientation in the stellar-mass black hole V404 Cygni

(2019)

Authors:

James CA Miller-Jones, Alexandra J Tetarenko, Gregory R Sivakoff, Matthew J Middleton, Diego Altamirano, Gemma E Anderson, Tomaso M Belloni, Rob P Fender, Peter G Jonker, Elmar G Körding, Hans A Krimm, Dipankar Maitra, Sera Markoff, Simone Migliari, Kunal P Mooley, Michael P Rupen, David M Russell, Thomas D Russell, Craig L Sarazin, Roberto Soria, Valeriu Tudose

Hard-state accretion disk winds from black holes: the revealing case of MAXI J1820+070

(2019)

Authors:

T Muñoz-Darias, F Jiménez-Ibarra, G Panizo-Espinar, J Casares, D Mata Sánchez, G Ponti, RP Fender, DAH Buckley, P Garnavich, MAP Torres, M Armas Padilla, PA Charles, JM Corral-Santana, JJE Kajava, EJ Kotze, C Littlefield, J Sánchez-Sierras, D Steeghs, J Thomas