Synthesis and characterization of two metallic spin-glass phases of Fe Mo4 Ge3
Physical Review B - Condensed Matter and Materials Physics 77:13 (2008)
Authors:
PJ Baker, PD Battle, SJ Blundell, F Grandjean, T Lancaster, GJ Long, SE Oldham, TJ Prior
Abstract:
Polycrystalline samples of Fe Mo4 Ge3 have been synthesized by the reduction of an oxide mixture at 1248 K and characterized by a combination of diffraction, muon spin relaxation (μ+ SR), Mössbauer spectroscopy, magnetometry, transport, and heat-capacity measurements. The compound adopts a tetragonal W5 Si3 structure (space group I4 mcm); the iron and molybdenum atoms are disordered over two crystallographic sites, 16k and either 4a or 4b. The synthesis conditions determine which fourfold site is selected; occupation of either leads to the presence of one-dimensional chains of transition metals in the structure. In both cases, the electrical resistivity below 200 K is ∼175 μΩ cm. The dc magnetization rapidly rises below 35 K (Fe Mo on 16k and 4b sites) or 16 K (16k and 4a sites), and a magnetization of 1 μB or 0.8 μB per Fe atom is observed in 4 T at 2 K. The ac susceptibility and the heat capacity both suggest that these are glasslike magnetic transitions, although the transition shows a more complex temperature dependence (with two maxima in χ″) when the 4b sites are partially occupied by iron. No long-range magnetic order is thought to be present at 5 K in either structural form; this has been proven by neutron diffraction and μ+ SR for the case when Fe and Mo occupy the 16k and 4b sites. © 2008 The American Physical Society.