Information and decoherence in a muon-fluorine coupled system

(2020)

Authors:

JM Wilkinson, SJ Blundell

Near-ideal molecule-based Haldane spin chain

Physical Review Research American Physical Society (APS) 2:1 (2020) 013082

Authors:

Robert C Williams, William JA Blackmore, Samuel PM Curley, Martin R Lees, Serena M Birnbaum, John Singleton, Benjamin M Huddart, Thomas J Hicken, Tom Lancaster, Stephen J Blundell, Fan Xiao, Andrew Ozarowski, Francis L Pratt, David J Voneshen, Zurab Guguchia, Christopher Baines, John A Schlueter, Danielle Y Villa, Jamie L Manson, Paul A Goddard

Large easy-axis anisotropy in the one-dimensional magnet BaMo(PO4)2

Physical Review B 100, 214427 (2019)

Authors:

Aly H. Abdeldaim, Danis I. Badrtdinov, Alexandra S. Gibbs, Pascal Manuel, Helen C. Walker, Manh Duc Le, Chien Hung Wu, Dariusz Wardecki, Sten-Gunnar Eriksson, Yaroslav O. Kvashnin, Alexander A. Tsirlin, and Gøran J. Nilsen

Abstract:

Optimization of superconducting properties of the stoichiometric CaKFe4As4

Superconductor Science and Technology IOP Press 33:2 (2019) 025003

Authors:

SJ Singh, SJ Cassidy, M Bristow, S Blundell, SJ Clarke, Amalia Coldea

Abstract:

CaKFe4As4 (1144) is a unique stoichiometric iron-based superconductor which harbours high upper critical fields and large critical current densities. In this work, we describe a study to optimize the synthesis conditions of stoichiometric polycrystalline samples of CaKFe4As4 and asses their structural, magnetic and transport properties. The samples were prepared over a wide temperature range (900-1100°C) and the pure phase formation is centered around 955°C. Outside this temperature region, impurity phases of KFe2As2 and CaFe2As2 can also form. Magnetic susceptibility and resistivity measurements establish that the critical temperature reaches ~34 K for the optimum synthesis conditions and the critical current reaches 2 × 104 A-cm−2. The post-annealing process demonstrates the stability of the 1144 phase up to 500°C, however, under higher temperature annealing, phase degradation occurs. Our study indicates that the formation of phase-pure 1144 occurs over a much narrower window and its highly prone to multi-phase formation as compared with the 122 family. As a result, the superconducting properties are enhanced for the pure 1144 phase but they are likely to be affected by the inter and intra-granular behaviour originating from the microstructural nature of polycrystalline CaKFe4As4, similar to other iron-based superconductors. Based on our study, we construct the phase diagram for polycrystalline 1144 and compared it with that reported for 1144 single crystal.

A review of modern ophthalmic optics

CONTEMPORARY PHYSICS 60:4 (2019) 330-331