La2SrCr2O7F2: A Ruddlesden–Popper oxyfluoride containing octahedrally coordinated Cr4+ centers

Inorganic Chemistry American Chemical Society (2016)

Authors:

Michael Hayward, Stephen J Blundell, Rhonghuan Zhang, Gareth Read, Franz Lang, Tom Lancaster

Abstract:

The low-temperature fluorination of the n = 2 Ruddlesden–Popper phase La2SrCr2O7 yields La2SrCr2O7F2 via a topochemical fluorine insertion reaction. The structure-conserving nature of the fluorination reaction means that the chromium centers of the initial oxide phase retain an octahedral coordination environment in the fluorinated product, resulting in a material containing an extended array of apex-linked Cr4+O6 units. Typically materials containing networks of octahedrally coordinated Cr4+ centers can only be prepared at high pressure; thus, the preparation of La2SrCr2O7F2 demonstrates that low-temperature topochemical reactions offer an alternative synthesis route to materials of this type. Neutron diffraction, magnetization, and μ+SR data indicate that La2SrCr2O7F2 undergoes a transition to an antiferromagnetic state below TN ≈ 140 K. The structure–property relations of this phase and other Cr4+ oxide phases are discussed.

Control of the third dimension in copper-based square-lattice antiferromagnets

Physical Review B American Physical Society (APS) 93:9 (2016) 094430

Authors:

Paul A Goddard, John Singleton, Isabel Franke, Johannes S Möller, Tom Lancaster, Andrew J Steele, Craig V Topping, Stephen J Blundell, Francis L Pratt, C Baines, Jesper Bendix, Ross D McDonald, Jamie Brambleby, Martin R Lees, Saul H Lapidus, Peter W Stephens, Brendan W Twamley, Marianne M Conner, Kylee Funk, Jordan F Corbey, Hope E Tran, JA Schlueter, Jamie L Manson

Control of the third dimension in copper-based square-lattice antiferromagnets

(2016)

Authors:

Paul A Goddard, John Singleton, Isabel Franke, Johannes S Moller, Tom Lancaster, Andrew J Steele, Craig V Topping, Stephen J Blundell, Francis L Pratt, C Baines, Jesper Bendix, Ross D McDonald, Jamie Brambleby, Martin R Lees, Saul H Lapidus, Peter W Stephens, Brendan W Twamley, Marianne M Conner, Kylee Funk, Jordan F Corbey, Hope E Tran, JA Schlueter, Jamie L Manson

Fourier space derivation of the demagnetization tensor for uniformly magnetized objects of cylindrical symmetry

Journal of Magnetism and Magnetic Materials Elsevier 401 (2016) 1060-1067

Authors:

Franz Lang, Stephen J Blundell

Experimental and Theoretical Electron Density Analysis of Copper Pyrazine Nitrate Quasi-Low-Dimensional Quantum Magnets.

Journal of the American Chemical Society 138:7 (2016) 2280-2291

Authors:

Leonardo HR Dos Santos, Arianna Lanza, Alyssa M Barton, Jamie Brambleby, William JA Blackmore, Paul A Goddard, Fan Xiao, Robert C Williams, Tom Lancaster, Francis L Pratt, Stephen J Blundell, John Singleton, Jamie L Manson, Piero Macchi

Abstract:

The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.