Coordinated Chemomechanical Cycles: A Mechanism for Autonomous Molecular Motion (vol 101, 238101, 2008)

PHYSICAL REVIEW LETTERS 102:13 (2009) ARTN 139901

Authors:

SJ Green, J Bath, AJ Turberfield

Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion.

Phys Rev Lett 101:23 (2008) 238101

Authors:

SJ Green, J Bath, AJ Turberfield

Abstract:

The second law of thermodynamics requires that directed motion be accompanied by dissipation of energy. Here we demonstrate the working principles of a bipedal molecular motor. The motor is constructed from DNA and is driven by the hybridization of a DNA fuel. We show how the catalytic activities of the feet can be coordinated to create a Brownian ratchet that is in principle capable of directional and processive movement along a track. This system can be driven away from equilibrium, demonstrating the potential of the motor to do work.

Towards registered single quantum dot photonic devices.

Nanotechnology 19:45 (2008) 455307

Authors:

KH Lee, FSF Brossard, M Hadjipanayi, X Xu, F Waldermann, AM Green, DN Sharp, AJ Turberfield, DA Williams, RA Taylor

Abstract:

We have registered the position and wavelength of a single InGaAs quantum dot using an innovative cryogenic laser lithography technique. This approach provides accurate marking of the location of self-organized dots and is particularly important for realizing any solid-state cavity quantum electrodynamics scheme where the overlap of the spectral and spatial characteristics of an emitter and a cavity is essential. We demonstrate progress in two key areas towards efficient single quantum dot photonic device implementation. Firstly, we show the registration and reacquisition of a single quantum dot with 50 and 150 nm accuracy, respectively. Secondly, we present data on the successful fabrication of a photonic crystal L3 cavity following the registration process.

ChemInform Abstract: Templated Self‐Assembly of Wedge‐Shaped DNA Arrays.

ChemInform Wiley 39:46 (2008) no-no

Authors:

Daniel Lubrich, Jonathan Bath, Andrew J Turberfield

Templated self-assembly of wedge-shaped DNA arrays

Tetrahedron 64:36 (2008) 8530-8534

Authors:

D Lubrich, J Bath, AJ Turberfield

Abstract:

We demonstrate the use of a one-dimensional template to control the shape of a two-dimensional array self-assembled from a minimal set of DNA tiles. A periodic single-stranded template seeds tile assembly. A unique vertex tile at the 5′ end of the template controls the positioning of edge and body tiles to create a wedge-shaped array. The vertex angle of the array is approximately 12°; edge lengths are of the order of 1 μm. © 2008 Elsevier Ltd. All rights reserved.