DNA hairpins: fuel for autonomous DNA devices.

Biophys J 91:8 (2006) 2966-2975

Authors:

Simon J Green, Daniel Lubrich, Andrew J Turberfield

Abstract:

We present a study of the hybridization of complementary DNA hairpin loops, with particular reference to their use as fuel for autonomous DNA devices. The rate of spontaneous hybridization between complementary hairpins can be reduced by increasing the neck length or decreasing the loop length. Hairpins with larger loops rapidly form long-lived kissed complexes. Hairpin loops may be opened by strand displacement using an opening strand that contains the same sequence as half of the neck and a "toehold" complementary to a single-stranded domain adjacent to the neck. We find loop opening via an external toehold to be 10-100 times faster than via an internal toehold. We measure rates of loop opening by opening strands that are at least 1000 times faster than the spontaneous interaction between hairpins. We discuss suitable choices for loop, neck, and toehold length for hairpin loops to be used as fuel for autonomous DNA devices.

Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition

Advanced Materials 18:12 (2006) 1561-1565

Authors:

JS King, E Graugnard, OM Roche, DN Sharp, J Scrimgeour, RG Denning, AJ Turberfield, CJ Summers

Abstract:

A range of techniques employed for 3D optical lithography including atomic layer deposition (ALD) and holographic lithography has been demonstrated. A 3D photonic crystal structure can be written by holographic lithography which makes use of a periodic interference pattern generated by a multiple-beam interferometer to expose a thick layer of photoresist. 3D microstructures can also be generated by point-to-point exposure of the resist by two-photon absorption at a laser focus. The potential of ALD has been explored to develop a well-controlled infiltration technique for optically fabricated 3D microstructures used for the formation of single- and multicomponent inverse opals. A high quality photonic crystal in amorphous TiO2 was produced by conformal infiltration followed by etching of holographically defined polymeric templates. The results show that the combination of holographic lithography and ALD allows rapid and flexible fabrication of 3D photonic crystals.

Study of Two-Photon Laser Photolithography with SU-8 at Cryogenic Temperatures

Institute of Electrical and Electronics Engineers (IEEE) (2006) 1-2

Authors:

KH Lee, AM Green, FSF Brossard, RA Taylor, DN Sharp, AJ Turberfleld, DA Williams, GAD Briggs

Cryogenic Two-Photon Laser Photolithography with SU-8

Applied Physics Letters 88 (2006) 143123 3pp

Authors:

RA Taylor, K.H. Lee, A.M. Green, F.S.F. Brossard

Three-dimensional optical lithography for photonic microstructures

Advanced Materials 18 (2006) 1557-1560

Authors:

AJ Turberfield, J. Scrimgeour, D. N. Sharp, C. F. Blanford