The 'burial site' of the military along the Via Flaminia. New stele from the 5th-6th miles
Archeologia Classica 64 (2013) 349-369
Abstract:
Study of seven new military steles, found at Rome at V-VI miles along the Via Flaminia, in the context of other epigraphic discoveries in the area related to praetorian, ur-baniciani and speculator garrisons: in total more than 30 inscriptions.The effect of phase front deformation on the growth of the filamentation instability in laser-plasma interactions
New Journal of Physics 15 (2013)
Abstract:
Laser pulses of 0.9 kJ/1 ns/1053 nm were focused onto low-Z plastic targets in both spherical and planar geometry. The uniformity of the resulting plasma production was studied using x-ray pinhole imaging. Evidence is provided suggesting that thermal filamentation starts to occur for irradiances on the target of Iλ2 1014 W cm-2 μm 2, even on deployment of phase plates to improve the focal spot spatial uniformity. The experiments are supported by both analytical modelling and two-dimensional particle-in-cell simulations. The implications for the applications of laser-plasma interactions that require high degrees of uniform irradiation are discussed. © IOP Publishing and Deutsche Physikalische Gesellschaft.X-ray scattering by many-particle systems
New Journal of Physics 15 (2013)
Abstract:
This paper reviews the treatment of high-frequency Thomson scattering in the non-relativistic and near-relativistic regimes with the primary purpose of understanding the nature of the frequency redistribution correction to the differential cross-section. This correction is generally represented by a factor involving the ratio ω α /ω β of the scattered (α) to primary (β) frequencies of the radiation. In some formulae given in the literature, the ratio appears squared, in others it does not. In Compton scattering, the frequency change is generally understood to be due to the recoil of the particle as a result of energy and momentum conservation in the photon-electron system. In this case, the Klein-Nishina formula gives the redistribution factor as . In the case of scattering by a many-particle system, however, the frequency and momentum changes are no longer directly interdependent but depend also upon the properties of the medium, which are encoded in the dynamic structure factor. We show that the redistribution factor explicit in the quantum cross-section (that seen by a photon) is ω α /ω β, which is not squared. Formulae for the many-body cross-section given in the literature, in which the factor is squared, can often be attributed to a different (classical) definition of the cross-section, though not all authors are explicit about which definition they are using. What is shown not to be true is that the structure factor simply gives the ratio of the many-electron to one-electron differential cross-sections, as is sometimes supposed. Mixing up the cross-section definitions can lead to errors when describing x-ray scattering. We illustrate the nature of the discrepancy by deriving the energy-integrated angular distributions, with first-order relativistic corrections, for classical and quantum scattering measurements, as well as the radiative opacity for photon diffusion in a Thomson-scattering medium, which is generally considered to be governed by quantum processes. © IOP Publishing and Deutsche Physikalische Gesellschaft.Longitudinal electron bunch profile reconstruction by performing phase retrieval on coherent transition radiation spectra
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS 16:4 (2013) ARTN 040701
Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal
PHYSICAL REVIEW B 88:10 (2013) ARTN 104105