Bounds on Heavy Axions with an X-Ray Free Electron Laser

Physical Review Letters American Physical Society (APS) 134:5 (2025) 55001

Authors:

Jack WD Halliday, Giacomo Marocco, Konstantin A Beyer, Charles Heaton, Motoaki Nakatsutsumi, Thomas R Preston, Charles D Arrowsmith, Carsten Baehtz, Sebastian Goede, Oliver Humphries, Alejandro Laso Garcia, Richard Plackett, Pontus Svensson, Georgios Vacalis, Justin Wark, Daniel Wood, Ulf Zastrau, Robert Bingham, Ian Shipsey, Subir Sarkar, Gianluca Gregori

Abstract:

<jats:p>We present new exclusion bounds obtained at the European X-Ray Free Electron Laser facility (EuXFEL) on axionlike particles in the mass range <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:msup><a:mrow><a:mn>10</a:mn></a:mrow><a:mrow><a:mo>−</a:mo><a:mn>3</a:mn></a:mrow></a:msup><a:mtext> </a:mtext><a:mtext> </a:mtext><a:mrow><a:mi>eV</a:mi></a:mrow><a:mo>≲</a:mo><a:msub><a:mrow><a:mi>m</a:mi></a:mrow><a:mrow><a:mi>a</a:mi></a:mrow></a:msub><a:mo>≲</a:mo><a:msup><a:mrow><a:mn>10</a:mn></a:mrow><a:mrow><a:mn>4</a:mn></a:mrow></a:msup><a:mtext> </a:mtext><a:mtext> </a:mtext><a:mi>eV</a:mi></a:mrow></a:math>. Our experiment exploits the Primakoff effect via which photons can, in the presence of a strong external electric field, decay into axions, which then convert back into photons after passing through an opaque wall. While similar searches have been performed previously at a third-generation synchrotron [Yamaji , ], our work demonstrates improved sensitivity, exploiting the higher brightness of x-rays at EuXFEL.</jats:p> <jats:sec> <jats:title/> <jats:supplementary-material> <jats:permissions> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material> </jats:sec>

A Bayesian perspective on single-shot laser characterization

(2025)

Authors:

J Esslinger, N Weisse, C Eberle, J Schroeder, S Howard, P Norreys, S Karsch, A Döpp

Shock-driven amorphization and melting in Fe2⁢O3

Physical Review B American Physical Society 111:2 (2025) 024209

Authors:

Celine Crépisson, Alexis Amouretti, Marion Harmand, Chrystele Sanloup, Patrick Heighway, Sam Azadi, David McGonegle, Thomas Campbell, Juan Pintor, David A Chin, Ethan Smith, Linda Hansen, Alessandro Forte, Thomas Gawne, Hae Ja Lee, Bob Nagler, Yuanfeng Shi, Guillaume Fiquet, Francois Guyot, Makita Mikako, Alessandra Bennuzi-Mounaix, Tommaso Vinci, Kohei Miyanishi, Norimasa Ozaki, Tatiana Pikuz, Hirotaka Nakamura, Keiichi Sueda, Toshinori Yabuushi, Makina Yabashi, Justin S Wark, Danae N Polsin, Sam M Vinko

Abstract:

We present measurements on Fe2O3 amorphization and melt under laser-driven shock compression up to 209(10) GPa via time-resolved in situ x-ray diffraction. At 122(3) GPa, a diffuse signal is observed indicating the presence of a noncrystalline phase. Structure factors have been extracted up to 182(6) GPa showing the presence of two well-defined peaks. A rapid change in the intensity ratio of the two peaks is identified between 145(12) and 151(12) GPa, indicative of a phase change. The noncrystalline diffuse scattering is consistent with shock amorphization of Fe2O3 between 122(3) and 145(12) GPa, followed by an amorphous-to-liquid transition above 151(12) GPa. Upon release, a noncrystalline phase is observed alongside crystalline α-Fe2O3. The extracted structure factor and pair distribution function of this release phase resemble those reported for Fe2O3 melt at ambient pressure.

Shock-driven amorphization and melting in Fe2O3

Physical Review B American Physical Society (APS) 111:2 (2025) 24209

Authors:

Céline Crépisson, Alexis Amouretti, Marion Harmand, Chrystèle Sanloup, Patrick Heighway, Sam Azadi, David McGonegle, Thomas Campbell, Juan Pintor, David Alexander Chin, Ethan Smith, Linda Hansen, Alessandro Forte, Thomas Gawne, Hae Ja Lee, Bob Nagler, YuanFeng Shi, Guillaume Fiquet, François Guyot, Mikako Makita, Alessandra Benuzzi-Mounaix, Tommaso Vinci, Kohei Miyanishi, Norimasa Ozaki, Tatiana Pikuz, Hirotaka Nakamura, Keiichi Sueda, Toshinori Yabuuchi, Makina Yabashi, Justin S Wark, Danae N Polsin, Sam M Vinko

Abstract:

<jats:p>We present measurements on <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"><a:mrow><a:msub><a:mi>Fe</a:mi><a:mn>2</a:mn></a:msub><a:msub><a:mi mathvariant="normal">O</a:mi><a:mn>3</a:mn></a:msub></a:mrow></a:math> amorphization and melt under laser-driven shock compression up to 209(10) GPa via time-resolved x-ray diffraction. At 122(3) GPa, a diffuse signal is observed indicating the presence of a noncrystalline phase. Structure factors have been extracted up to 182(6) GPa showing the presence of two well-defined peaks. A rapid change in the intensity ratio of the two peaks is identified between 145(12) and 151(12) GPa, indicative of a phase change. The noncrystalline diffuse scattering is consistent with shock amorphization of <c:math xmlns:c="http://www.w3.org/1998/Math/MathML"><c:mrow><c:msub><c:mi>Fe</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi mathvariant="normal">O</c:mi><c:mn>3</c:mn></c:msub></c:mrow></c:math> between 122(3) and 145(12) GPa, followed by an amorphous-to-liquid transition above 151(12) GPa. Upon release, a noncrystalline phase is observed alongside crystalline <e:math xmlns:e="http://www.w3.org/1998/Math/MathML"><e:mrow><e:mi>α</e:mi><e:mtext>−</e:mtext><e:msub><e:mi>Fe</e:mi><e:mn>2</e:mn></e:msub><e:msub><e:mi mathvariant="normal">O</e:mi><e:mn>3</e:mn></e:msub></e:mrow></e:math>. The extracted structure factor and pair distribution function of this release phase resemble those reported for <g:math xmlns:g="http://www.w3.org/1998/Math/MathML"><g:mrow><g:msub><g:mi>Fe</g:mi><g:mn>2</g:mn></g:msub><g:msub><g:mi mathvariant="normal">O</g:mi><g:mn>3</g:mn></g:msub></g:mrow></g:math> melt at ambient pressure.</jats:p> <jats:sec> <jats:title/> <jats:supplementary-material> <jats:permissions> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material> </jats:sec>

Ionic structure, liquid-liquid phase transitions, x-ray diffraction, and x-ray Thomson scattering in shock-compressed liquid silicon in the 100-200 GPa regime

Physical Review E American Physical Society 111:1 (2025) 015205

Authors:

MW Chandre Dharma-wardana, Dennis D Klug, Hannah Poole, Gianluca Gregori

Abstract:

Recent cutting-edge experiments have provided in situ structure characterization and measurements of the pressure (P), density (¯ρ) and temperature (T) of shock compressed silicon in the 100 GPa range of pressures and up to ∼10,000K. We present first-principles calculations in this P, T, ρ¯ regime to reveal a plethora of novel liquid-liquid phase transitions (LPTs) identifiable via discontinuities in the pressure and the compressibility. Evidence for the presence of a highly-correlated liquid (CL) phase, as well as a normal-liquid (NL) phase at the LPTs is presented by a detailed study of one LPT. The LPTs make the interpretation of these experiments more challenging. The LPTs preserve the short-ranged ionic structure of the fluid by collective adjustments of many distant atoms when subject to compression and heating, with minimal change in the ion-ion pair-distribution functions, and in transport properties such as the electrical and thermal conductivities σ and κ. We match the experimental X-Ray Thomson scattering and X-ray diffraction data theoretically, and provide pressure isotherms, ionization data and compressibilities that support the above picture of liquid silicon as a highly complex LPT-driven “glassy” metallic liquid. These novel results are relevant to materials research, studies of planetary interiors, high-energy-density physics, and in laser-fusion studies.