Electrothermal filamentation of igniting plasmas

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics American Physical Society 110 (2024) 035205

Authors:

Peter Norreys, Heath Martin, robert Paddock, Marko Von Der Leyen, Vadim Eliseev, Rusko Ruskov, Robin Timmis, Jordan Lee, Abigail James

Abstract:

Dense, hot plasmas are susceptible to the electrothermal instability: a collisional process which permits temperature perturbations in electron currents to grow. It is shown here for the first time that linearising a system comprised of two opposing currents and a mobile ion-background as three distinct fluids yields unstable modes with rapid growth rates (∼ 1013 s −1 ) for wavenumbers below a threshold kth. An analytical threshold condition is derived, this being surpassed for typical hot-spot and shell parameters. Particle-in-cell simulations successfully benchmark the predicted growth rates and threshold behaviour. Electrothermal filamentation within the shell will impact the burn wave propagation into the cold fuel and resulting burn dynamics.

Diffuse scattering from dynamically compressed single-crystal zirconium following the pressure-induced αω phase transition

Physical Review B American Physical Society (APS) 110:5 (2024) 054113

Authors:

PG Heighway, S Singh, MG Gorman, D McGonegle, JH Eggert, RF Smith

Abstract:

The prototypical αω phase transition in zirconium is an ideal test bed for our understanding of polymorphism under extreme loading conditions. After half a century of study, a consensus had emerged that the transition is realized via one of two distinct displacive mechanisms, depending on the nature of the compression path. However, recent dynamic-compression experiments equipped with diffraction diagnostics performed in the past few years have revealed new transition mechanisms, demonstrating that our understanding of the underlying atomistic dynamics and transition kinetics is in fact far from complete. We present classical molecular dynamics simulations of the αω phase transition in single-crystal zirconium shock compressed along the [0001] axis using a machine-learning-class potential. The transition is predicted to proceed primarily via a modified version of the two-stage Usikov-Zilberstein mechanism, whereby the high-pressure ω phase heterogeneously nucleates at boundaries between grains of an intermediate β phase. We further observe the fomentation of atomistic disorder at the junctions between β grains, leading to the formation of highly defective interstitial material between the ω grains. We directly compare synthetic x-ray diffraction patterns generated from our simulations with those obtained using femtosecond diffraction in recent dynamic-compression experiments, and show that the simulations produce the same unique, anisotropic diffuse scattering signal unlike any previously seen from an elemental metal. Our simulations suggest that the diffuse signal arises from a combination of thermal diffuse scattering, nanoparticlelike scattering from residual kinetically stabilized α and β grains, and scattering from interstitial defective structures. Published by the American Physical Society 2024

Gravitational waves from high-power twisted light

Physical Review D American Physical Society 110 (2024) 044023

Authors:

Eduard Atonga, Killian Martineau, Ramy Aboushelbaya, Marko von der Leyen, Sunny Howard, Jordan Lee, Heath Martin, Iustin Ouatu, Robert Paddock, Rusko Ruskov, Robin Timmis, Peter Norreys

Abstract:

Recent advances in high-energy and high-peak-power laser systems have opened up new possibilities for fundamental physics research. In this work, the potential of twisted light for the generation of gravitational waves in the high frequency regime is explored for the first time. Focusing on Bessel beams, novel analytic expressions and numerical computations for the generated metric perturbations and associated powers are presented. The gravitational peak intensity is shown to reach 1.44 × 10−5 W.m−2 close to the source, and 1.01 × 10−19 W.m−2 ten meters away. Compelling evidence is provided that the properties of the generated gravitational waves, such as frequency, polarisation states and direction of emission, are controllable by the laser pulse parameters and optical arrangements.

Report on the Advanced Linear Collider Study Group (ALEGRO) Workshop 2024

ArXiv 2408.03968 (2024)

Authors:

J Vieira, B Cros, P Muggli, IA Andriyash, O Apsimon, M Backhouse, C Benedetti, SS Bulanov, A Caldwell, Min Chen, V Cilento, S Corde, R D'Arcy, S Diederichs, E Ericson, E Esarey, J Farmer, L Fedeli, A Formenti, B Foster, M Garten, CGR Geddes, T Grismayer, MJ Hogan, S Hooker, A Huebl, S Jalas, M Kirchen, R Lehe, W Leemans, Boyuan Li, CA Lindström, R Losito, CE Mitchell, WB Mori, P Piot, D Terzani, M Thévenet, M Turner, J-L Vay, J Vieira, D Völker, Jie Zhang, W Zhang

Unexpected Observation of Disorder and Multiple Phase-Transition Pathways in Shock-Compressed Zr.

Physical review letters 133:9 (2024) 096101

Authors:

Saransh Singh, Martin G Gorman, Patrick G Heighway, Joel V Bernier, David McGonegle, Hae Ja Lee, Bob Nagler, Jon H Eggert, Raymond F Smith

Abstract:

The response of materials under dynamic compression involves a complex interplay of various deformation mechanisms aimed at relieving shear stresses, yielding a remarkable diversity in material behavior. In this Letter, we utilize femtosecond x-ray diffraction coupled with nanosecond laser compression to reveal an intricate competition between multiple shear-relieving mechanisms within an elemental metal. Our observations in shocked-compressed single-crystal Zr indicate a disorder-mediated shear relaxation at lower pressures. Above the phase-transition pressure, we observe the increasing contribution of structural phase transition in relieving shear stress. We detect not one but three concurrent pathways during the transition from the hcp to a hex-3 structure. These complex dynamics are partially corroborated through multimillion-atom molecular dynamics simulations employing a machine-learned interatomic potential. Our observation of multiple concurrent pathways and disorder during shock compression underscore the far greater intricacies in the dynamic response of metals than previously assumed.