Measurement of turbulent velocity and bounds for thermal diffusivity in laser shock compressed foams by X-ray photon correlation spectroscopy
Abstract:
Experimental benchmarking of transport coefficients under extreme conditions is required for validation of differing theoretical models. To date, measurement of transport properties of dynamically compressed samples remains a challenge with only a limited number of studies able to quantify transport in high pressure and temperature matter. X-ray photon correlation spectroscopy utilizes coherent X-ray sources to measure time correlations of density fluctuations, thus providing measurements of length and time scale dependent transport properties. Here,we present a first-of-a-kind experiment to conduct X-ray photon correlation spectroscopy in laser shock compression experiments. We report measurement of the turbulent velocity in the wake of a laser driven supersonic shock and place an upper bound on thermal diffusivity in a solid density plasma on nanosecond timescales.A Bayesian perspective on single-shot laser characterization
Abstract:
We introduce a Bayesian framework for measuring spatio-temporal couplings (STCs) in ultra-intense lasers that reconceptualizes what constitutes a ’single-shot’ measurement. Moving beyond traditional distinctions between single- and multi-shot devices, our approach provides rigorous criteria for determining when measurements can truly resolve individual laser shots rather than statistical averages. By contextualizing single measurements, this framework shows that single-shot capability is not an intrinsic device property but emerges from the relationship between measurement precision and predictability. Implementing this approach with a new measurement device at the ATLAS-3000 petawatt laser, we provide the first quantitative uncertainty bounds on pulse front tilt and curvature. Notably, we observe that our Bayesian method reduces uncertainty by up to 60% compared to traditional approaches. Through this analysis, we reveal how the interplay between measurement precision and intrinsic system variability defines achievable resolution—insights that have direct implications for applications where precise control of laser-matter interaction is critical.