Resonant excitation of plasma waves in a plasma channel

Physical Review Research American Physical Society (APS) 6:2 (2024) L022001

Authors:

AJ Ross, J Chappell, JJ van de Wetering, J Cowley, E Archer, N Bourgeois, L Corner, DR Emerson, L Feder, XJ Gu, O Jakobsson, H Jones, A Picksley, L Reid, W Wang, R Walczak, SM Hooker

Generation of photoionized plasmas in the laboratory of relevance to accretion-powered x-ray sources using keV line radiation

High Energy Density Physics Elsevier (2024) 101097

Authors:

D Riley, Rl Singh, S White, M Charlwood, D Bailie, C Hyland, T Audet, G Sarri, B Kettle, G Gribakin, Steven J Rose, Eg Hill, Gj Ferland, Rjr Williams, Fp Keenan

Abstract:

We describe laboratory experiments to generate x-ray photoionized plasmas of relevance to accretion-powered x-ray sources such as neutron star binaries and quasars, with significant improvements over previous work. A key quantity is referenced, namely the photoionization parameter, defined as ξ = 4πF/newhere F is the x-ray flux and ne the electron density. This is normally meaningful in an astrophysical steady-state context, but is also commonly used in the literature as a figure of merit for laboratory experiments that are, of necessity, time-dependent. We demonstrate emission-weighted values of ξ > 50 erg-cm s−1 using laser-plasma x-ray sources, with higher results at the centre of the plasma which are in the regime of interest for several astrophysical scenarios. Comparisons of laboratory experiments with astrophysical codes are always limited, principally by the many orders of magnitude differences in time and spatial scales, but also other plasma parameters. However useful checks on performance can often be made for a limited range of parameters. For example, we show that our use of a keV line source, rather than the quasi-blackbody radiation fields normally employed in such experiments, has allowed the generation of the ratio of inner-shell to outer-shell photoionization expected from a blackbody source with ∼keV spectral temperature. We compare calculations from our in-house plasma modelling code with those from Cloudy and find moderately good agreement for the time evolution of both electron temperature and average ionisation. However, a comparison of code predictions for a K-β argon X-ray spectrum with experimental data reveals that our Cloudy simulation overestimates the intensities of more highly ionised argon species. This is not totally surprising as the Cloudy model was generated for a single set of plasma conditions, while the experimental data are spatially integrated.

Quantifying ionization in hot dense plasmas

Physical Review E American Physical Society 109 (2024) L023201

Authors:

Thomas Gawne, Sam Vinko, Justin Wark

Abstract:

Ionization is a problematic quantity in that it does not have a well-defined thermodynamic definition, yet it is a key parameter within plasma modelling. One still therefore aims to find a consistent and unambiguous definition for the ionization state. Within this context we present finite-temperature density functional theory calculations of the ionization state of carbon in CH plasmas using two potential definitions: one based on counting the number of continuum electrons, and another based on the optical conductivity. Differences of up to 10% are observed between the two methods. However, including “Pauli forbidden” transitions in the conductivity reproduces the counting definition, suggesting such transitions are important to evaluate the ionization state.

Multi-GeV wakefield acceleration in a plasma-modulated plasma accelerator

Physical Review E American Physical Society 109:2 (2024) 25206

Authors:

Johannes J van de Wetering, Simon M Hooker, Roman Walczak

Abstract:

We investigate the accelerator stage of a plasma-modulated plasma accelerator (P-MoPA) [Jakobsson et al., Phys. Rev. Lett. 127, 184801 (2021)] using both the paraxial wave equation and particle-in-cell (PIC) simulations. We show that adjusting the laser and plasma parameters of the modulator stage of a P-MoPA allows the temporal profile of pulses within the pulse train to be controlled, which in turn allows the wake amplitude in the accelerator stage to be as much as 72% larger than that generated by a plasma beat-wave accelerator with the same total drive laser energy. Our analysis shows that Rosenbluth-Liu detuning is unimportant in a P-MoPA if the number of pulses in the train is less than ∼30, and that this detuning is also partially counteracted by increased red-shifting, and hence increased pulse spacing, towards the back of the train. An analysis of transverse mode oscillations of the driving pulse train is found to be in good agreement with 2D (Cartesian) PIC simulations. PIC simulations demonstrating energy gains of ∼1.5GeV (∼2.5GeV) for drive pulse energies of 2.4J (5.0J) are presented. Our results suggest that P-MoPAs driven by few-joule, picosecond pulses, such as those provided by high-repetition-rate thin-disk lasers, could accelerate electron bunches to multi-GeV energies at pulse repetition rates in the kilohertz range.

Energy gain of wetted-foam implosions with auxiliary heating for inertial fusion studies

Plasma Physics and Controlled Fusion IOP Publishing 66:2 (2024) 025005

Authors:

RW Paddock, TS Li, E Kim, JJ Lee, H Martin, RT Ruskov, S Hughes, SJ Rose, CD Murphy, RHH Scott, R Bingham, W Garbett, VV Elisseev, BM Haines, AB Zylstra, EM Campbell, CA Thomas, T Goffrey, TD Arber, R Aboushelbaya, MW Von der Leyen, RHW Wang, AA James, I Ouatu, R Timmis, S Howard, E Atonga, PA Norreys